【題目】在平面直角坐標(biāo)系中,已知反比例函數(shù)y的圖象經(jīng)過(guò)點(diǎn)A(1,)

(1)試確定此反比例函數(shù)的解析式;

(2)點(diǎn)O是坐標(biāo)原點(diǎn),將線OAO點(diǎn)順時(shí)針旋轉(zhuǎn)30°得到線段OB,判斷點(diǎn)B是否在此反比例函數(shù)的圖象上,并說(shuō)明理由.

【答案】(1)y;(2)在,理由見解析

【解析】

1)把點(diǎn)A坐標(biāo)代入反比例函數(shù)解析式,求出k值即可;(2)過(guò)點(diǎn)Ax軸的垂線交x軸于點(diǎn)C.過(guò)點(diǎn)Bx軸的垂線交x軸于點(diǎn)D.利用勾股定理可求出OA的長(zhǎng),進(jìn)而可得∠OAC=30°,∠AOC60°,由旋轉(zhuǎn)的性質(zhì)可得∠AOB=30°,即可求出∠BOD的度數(shù),進(jìn)而可得BD、OD的長(zhǎng),即可得B點(diǎn)坐標(biāo),把B點(diǎn)橫坐標(biāo)代入解析式即可得答案.

(1)A(1)代入y,得k

反比例函數(shù)的解析式為y.

(2)過(guò)點(diǎn)Ax軸的垂線交x軸于點(diǎn)C.

Rt△AOC中,OC1AC.

由勾股定理,得OA2,

∴∠OAC=30°,∠AOC60°.

過(guò)點(diǎn)Bx軸的垂線交x軸于點(diǎn)D.

由題意,∠AOB30°,OBOA2,

∴∠BOD30°,

Rt△BOD中,得BD1,OD

∴B點(diǎn)坐標(biāo)為(,1)

x代入y中,得y1,

點(diǎn)B(,1)在反比例函數(shù)y的圖象上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O中,FG、AC是直徑,AB是弦,FG⊥AB,垂足為點(diǎn)P,過(guò)點(diǎn)C的直線交AB的延長(zhǎng)線于點(diǎn)D,交GF的延長(zhǎng)線于點(diǎn)E,已知AB=4,⊙O的半徑為

1)分別求出線段APCB的長(zhǎng);

2)如果OE=5,求證:DE⊙O的切線;

3)如果tan∠E=,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為半圓內(nèi)一點(diǎn),為圓心,直徑長(zhǎng)為,,,將繞圓心逆時(shí)針旋轉(zhuǎn)至,點(diǎn)上,則邊掃過(guò)區(qū)域(圖中陰影部分)的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的頂點(diǎn)坐標(biāo)為A(﹣4,1),B(﹣2,3),C(﹣1,2).

1)畫出ABC關(guān)于原點(diǎn)O成中心對(duì)稱的ABC,點(diǎn)AB,C分別是點(diǎn)A,B,C的對(duì)應(yīng)點(diǎn).

2)求過(guò)點(diǎn)B的反比例函數(shù)解析式.

3)判斷AB的中點(diǎn)P是否在(2)的函數(shù)圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為了了解在校學(xué)生對(duì)校本課程的喜愛情況,隨機(jī)調(diào)查了九年級(jí)學(xué)生對(duì)A,B,C,D,E五類校本課程的喜愛情況,要求每位學(xué)生只能選擇一類最喜歡的校本課程,根據(jù)調(diào)查結(jié)果繪制了如下的兩個(gè)統(tǒng)計(jì)圖.

請(qǐng)根據(jù)圖中所提供的信息,完成下列問(wèn)題:

1)本次被調(diào)查的學(xué)生的人數(shù)為   ;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)扇形統(tǒng)計(jì)圖中,C類所在扇形的圓心角的度數(shù)為   

4)若該中學(xué)有4000名學(xué)生,請(qǐng)估計(jì)該校喜愛CD兩類校本課程的學(xué)生共有多少名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ABDC,ABAD,對(duì)角線AC,BD交于點(diǎn)O,AC平分∠BAD,過(guò)點(diǎn)CCEABAB的延長(zhǎng)線于點(diǎn)E,連接OE

1)求證:四邊形ABCD是菱形;

2)若AB,BD2,求OE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,⊙O的半徑為rr0).給出如下定義:若平面上一點(diǎn)P到圓心O的距離d,滿足,則稱點(diǎn)P為⊙O隨心點(diǎn)

1)當(dāng)⊙O的半徑r=2時(shí),A3,0),B0,4),C2),D,)中,⊙O隨心點(diǎn)

2)若點(diǎn)E4,3)是⊙O隨心點(diǎn),求⊙O的半徑r的取值范圍;

3)當(dāng)⊙O的半徑r=2時(shí),直線y=- x+bb≠0)與x軸交于點(diǎn)M,與y軸交于點(diǎn)N,若線段MN上存在⊙O隨心點(diǎn),直接寫出b的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C在圓O上,BECD垂足為E,CB平分∠ABE,連接BC

1)求證:CD為⊙O的切線;

2)若cosCAB,CE,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠A=75°,∠C=45°,BC=4,點(diǎn)MAC邊上的動(dòng)點(diǎn),點(diǎn)M關(guān)于直線AB、BC的對(duì)稱點(diǎn)分別為P、Q,則線段PQ長(zhǎng)的取值范圍是______

查看答案和解析>>

同步練習(xí)冊(cè)答案