【題目】如圖,兩條直線AB、CD相交于點O,且,射線OMOB開始繞O點逆時針方向旋轉,速度為,射線ON同時從OD開始繞O點順時針方向旋轉,速度為兩條射線OM、ON同時運動,運動時間為t本題出現(xiàn)的角均小于平角

時,的度數(shù)為多少,的度數(shù)為多少;的度數(shù)為多少;

時,若,試求出t的值;

時,探究的值,問:t滿足怎樣的條件是定值;滿足怎樣的條件不是定值?

【答案】1,;(2t的值為秒或10秒;(3)當時,的值不是定值;當時,的值是3

【解析】

1)根據(jù)時間和速度分別計算∠BOM和∠DON的度數(shù),再根據(jù)角的和與差可得結論;
2)分兩種情況:①如圖所示,當時,②如圖所示,當時,分別根據(jù)已知條件列等式可得t的值;
3)分兩種情況,分別計算、的度數(shù),然后代入可得結論.

由題意得:,

,

,

故答案為:,,

ONOA重合時,

OMOA重合時,

如圖所示,當時,,

,可得,

解得

如圖所示,當時,,,

,可得,解得,

綜上,t的值為秒或10秒;

時,

,解得,

如圖所示,當時,,

不是定值,

如圖所示,當時,,,

,

定值,

綜上所述,當時,的值不是定值;當時,的值是3

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】問題背景:(1)已知A(1,2)B(3,2),C(1,﹣1)D(3,﹣3).在平面直角坐標系中描出這幾個點,并分別找到線段ABCD中點P1、P2,然后寫出它們的坐標,則P1   ,P2   

探究發(fā)現(xiàn):(2)結合上述計算結果,你能發(fā)現(xiàn)若線段的兩個端點的坐標分別為(x1y1),(x2y2),則線段的中點坐標為   

拓展應用:(3)利用上述規(guī)律解決下列問題:已知三點E(1,2),F(3,1),G(1,4),第四個點H(x,y)與點E、點F、點G中的一個點構成的線段的中點與另外兩個端點構成的線段的中點重合,求點H的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的正方形網(wǎng)格中,△ABC的頂點均在格點上,點A、B的坐標分別是A(5,3)、B(5,1).
(1)在圖中標出△ABC外心D的位置,并直接寫出它的坐標;
(2)判斷△ABC的外接圓D與x軸、y軸的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0)和B(3,0)兩點,與y軸交于點C,對稱軸與x軸交于點E,點D為頂點,連接BD、CD、BC.

(1)求二次函數(shù)解析式及頂點坐標;
(2)點P為線段BD上一點,若SBCP= ,求點P的坐標;
(3)點M為拋物線上一點,作MN⊥CD,交直線CD于點N,若∠CMN=∠BDE,請直接寫出所有符合條件的點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知數(shù)軸上兩點A、B對應的數(shù)分別為4,點P為數(shù)軸上一動點,其對應的數(shù)為x

若點P到點A、點B的距離相等,求點P對應的數(shù)

數(shù)軸上是否存在點P,使點P到點A、點B的距離之和為7?若存在,請直接寫出x的值若不存在,請說明理由?

若點P1個單位的速度從點O向右運動,同時點A5個單位的速度向左運動,點B20個單位的速度向右運動,在運動過程中,MN分別是AP、OB的中點,問:的值是否發(fā)生變化?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,己知△ABC,任取一點O,連AO,BO,CO,并取它們的中點D,E,F(xiàn),得△DEF,則下列說法正確的個數(shù)是( ) ①△ABC與△DEF是位似圖形; ②△ABC與△DEF是相似圖形;
③△ABC與△DEF的周長比為1:2;④△ABC與△DEF的面積比為4:1.

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某青春黨支部在精準扶貧活動中,給結對幫扶的貧困家庭贈送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數(shù)恰好與用360元購買甲種樹苗的棵數(shù)相同.

(1)求甲、乙兩種樹苗每棵的價格各是多少元?

(2)在實際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時,甲種樹苗的售價比第一次購買時降低了10%,乙種樹苗的售價不變,如果再次購買兩種樹苗的總費用不超過1500元,那么他們最多可購買多少棵乙種樹苗?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程或方程組解應用題:
根據(jù)城市規(guī)劃設計,某市工程隊準備為該城市修建一條長4800米的公路.鋪設600m后,為了盡量減少施工對城市交通造成的影響,該工程隊增加人力,實際每天修建公路的長度是原計劃的2倍,結果9天完成任務,該工程隊原計劃每天鋪設公路多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊△ABC沿射線BC向右平移到△DCE的位置,連接ADBD,則下列結論:①AD=BC②BD、AC互相平分;四邊形ACED是菱形.其中正確的個數(shù)是

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

同步練習冊答案