【題目】如圖,數(shù)軸上A、B兩點(diǎn)對應(yīng)的數(shù)分別為﹣5、15.

(1)點(diǎn)P是數(shù)軸上任意一點(diǎn),且PA=PB,求出點(diǎn)P對應(yīng)的數(shù).

(2)點(diǎn)M、N分別是數(shù)軸上的兩個(gè)動(dòng)點(diǎn),點(diǎn)M從點(diǎn)A出發(fā)以每秒3個(gè)單位長度的速度運(yùn)動(dòng),同時(shí),點(diǎn)N從原點(diǎn)O出發(fā)以每秒2個(gè)單位長度的速度運(yùn)動(dòng).

若M、N兩點(diǎn)都向數(shù)軸正方向運(yùn)動(dòng),經(jīng)過幾秒,點(diǎn)M、點(diǎn)N分別到原點(diǎn)O的距離相等?

當(dāng)M、N兩點(diǎn)運(yùn)動(dòng)到AM=2BN時(shí),請直接寫出點(diǎn)M在數(shù)軸上對應(yīng)的數(shù).

【答案】(1)5;(2)經(jīng)過5秒或1秒,點(diǎn)M、點(diǎn)N分別到原點(diǎn)O的距離相等;M在數(shù)軸上對應(yīng)的數(shù)為﹣95,85,﹣

【解析】

(1)利用兩點(diǎn)間的距離公式,依據(jù)PA=PB列方程求解可得結(jié)果;
(2)①由數(shù)軸知,當(dāng)M,N重合時(shí),3t-5=2t,可得t=5;當(dāng)M,NO點(diǎn)異側(cè)時(shí),5-3t=2t,解得t=1;
②分兩種情況討論,求得t的值,進(jìn)而得到點(diǎn)M在數(shù)軸上對應(yīng)的數(shù).

解:(1)設(shè)P點(diǎn)表示的數(shù)為x,由題意得,x+5=15﹣x,

解得,x=5,故答案為:5;

(2)①由數(shù)軸知,當(dāng)M,N重合時(shí),3t﹣5=2t,

解得,t=5(秒);

當(dāng)M,NO點(diǎn)異側(cè)時(shí),5﹣3t=2t,

解得t=1(秒);

綜上所述,經(jīng)過5秒或1秒,點(diǎn)M、點(diǎn)N分別到原點(diǎn)O的距離相等;

②由題可得,ON=2t,AM=3t,

當(dāng)點(diǎn)N在線段OB上時(shí),BN=OB﹣ON=15﹣2t,

AM=2BN,可得3t=2×(15﹣2t),

解得

若點(diǎn)M向右移動(dòng),則點(diǎn)M表示的數(shù)為

若點(diǎn)M向左移動(dòng),則點(diǎn)M表示的數(shù)為

當(dāng)點(diǎn)N在線段OB的延長線上時(shí),BN=ON﹣OB=2t﹣15,

AM=2BN,可得3t=2×(2t﹣15),

解得t=30,

若點(diǎn)M向右移動(dòng),則點(diǎn)M表示的數(shù)為

若點(diǎn)M向左移動(dòng),則點(diǎn)M表示的數(shù)為

綜上所述,M在數(shù)軸上對應(yīng)的數(shù)為﹣95,85,,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,ABC是等邊三角形,在BC邊上取點(diǎn)D,在邊AC的延長線上取點(diǎn)E使DE=AD.

求證:BD=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體ABCDEF中,正三角形BCE所在平面與菱形ABCD所在的平面垂直,F(xiàn)D⊥平面ABCD,且
(1)判斷直線EF平面ABCD的位置關(guān)系,并說明理由;
(2)若∠CBA=60°,求二面角A﹣FB﹣E的余弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC為等邊三角形,過點(diǎn)BBDAC于點(diǎn)D , 過DDEBC , 且DE=CD , 連接CE

(1)求證:△CDE為等邊三角形;
(2)請連接BE , 若AB=4,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點(diǎn)E、F分別在邊AD、BC上,且EF∥CD,G為邊AD延長線上一點(diǎn),連接BG,則圖中與△ABG相似的三角形有( )個(gè).
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖像與的圖像交于點(diǎn),與軸和 軸分別交于點(diǎn)和點(diǎn),且點(diǎn)的橫坐標(biāo)為.

(1)的值與的長;

(2)若點(diǎn)為線段上一點(diǎn),且,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,I是△ABC內(nèi)一點(diǎn),AI的延長線交BC于點(diǎn)D,交⊙O于E,連接BE,BI.若IB平分∠ABC,EB=EI.
(1)求證:AE平分∠BAC;
(2)若BA= ,OI⊥AD于I,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市招聘教師,對應(yīng)聘者分別進(jìn)行教學(xué)能力、科研能力、組織能力三項(xiàng)測試,其中甲、乙兩人的成就如下表:(單位:分)

項(xiàng)目
人員

教學(xué)能力

科研能力

組織能力

86

93

73

81

95

79


(1)根據(jù)實(shí)際需要,將閱讀能力、科研能力、組織能力三項(xiàng)測試得分按5:3:2的比確定最后成績,若按此成績在甲、乙兩人中錄用一人,誰將被錄用?
(2)按照(1)中的成績計(jì)算方法,將每位應(yīng)聘者的最后成績繪制成如圖所示的頻數(shù)分布直方圖(每組分?jǐn)?shù)段均包含左端數(shù)值,不包含右端數(shù)值),并決定由高分到低分錄用8人.甲、乙兩人能否被錄用?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,AB=AC,BC交⊙O于點(diǎn)D,AC交⊙O于點(diǎn)E,∠BAC=45°,給出以下五個(gè)結(jié)論:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧是劣弧的2倍;⑤AE=BC,其中正確的序號(hào)是

查看答案和解析>>

同步練習(xí)冊答案