【題目】在平面直角坐標系中,有點 Aa13),Ba+2,2a1

(1)若線段ABx軸,求點A、B的坐標;

(2)當點Bx軸的距離是點Ay軸的距離2倍時,求點B的坐標.

【答案】1A(1,3)B(4,3);(2B(,)

【解析】

1)直接利用平行于x軸點的坐標特點得出3=2a-1,進而求出答案;

2)利用點Bx軸的距離是點Ay軸的距離2倍列方程求解即可得出a的值,即可得出答案.

解:(1)∵線段ABx軸,

2a-1=3,

解得:a=2

a-1=1,a+2=4

A(1,3)B(4,3)

2)∵點Bx軸的距離是點Ay軸的距離2倍,

|2a-1|=2|a-1|

解得:a=,

a+2=2a1=,

B()

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某工廠第一季度生產(chǎn)甲、乙兩種機器共450臺,改進生產(chǎn)技術(shù)后,計劃第二季度生產(chǎn)這兩種機器共520臺,其中甲種機器增產(chǎn)10%,乙種機器增產(chǎn)20%,該廠第一季度生產(chǎn)甲、乙兩種機器各多少臺?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點D△ABCBC上一點,AD=BD,且AD平分∠BAC.1∠B=50°,求∠ADC的度數(shù);2∠C=30°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,在RtABC中,∠C=90°,∠A=30°,BC=18cm.動點P從點A出發(fā),沿AB向點B運動,動點Q從點B出發(fā),沿BC向點C運動,如果動點P2cm/s,Q1cm/s的速度同時出發(fā),設運動時間為t(s),解答下列問題:

(1)t______時,PBQ是等邊三角形?

(2)P,Q在運動過程中,PBQ的形狀不斷發(fā)生變化,當t為何值時,PBQ是直角三角形?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC的三個頂點的坐標分別為A﹣50)、B﹣2,3)、C﹣1,0

(1)畫出ABC關(guān)于坐標原點O成中心對稱的A1B1C1;

(2)ABC繞坐標原點O順時針旋轉(zhuǎn)90°,畫出對應的A′B′C′,

(3)若以A′B′、C′D′為頂點的四邊形為平行四邊形,請直接寫出在第四象限中的D′坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于平面直角坐標系 xOy 中的點 A,給出如下定義:若存在點 B(不與點 A 重合,且直線 AB 不與 坐標軸平行或重合),過點 A 作直線 mx 軸,過點 B 作直線 ny 軸,直線 mn 相交于點 C.當線段 AC,BC 的長度相等時,稱點 B 為點 A 的等距點,稱三角形 ABC 的面積為點 A 的等距面積. 例如:如 圖,點 A21),點 B54),因為 AC= BC=3,所以 B 為點 A 的等距點,此時點 A 的等距面積為

(1) A 的坐標是(0,1),在點 B123),B2 (1, 1) , B3 (3, 2) 中,點A的等距點為

(2) A 的坐標是 (3,1) ,點 A 的等距點 B 在第三象限,

若點 B 的坐標是 (5, 1) ,求此時點 A 的等距面積;

若點 A 的等距面積不小于 2,請直接寫出點 B 的橫坐標 t 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】給出下列命題:

①三角形的三條高相交于一點;

②如果一組數(shù)據(jù)中有一個數(shù)據(jù)變動,那么它的平均數(shù)、眾數(shù)、中位數(shù)都隨之變動;

③如果不等式的解集為,那么;

④如果三角形的一個外角等于與它相鄰的一個內(nèi)角則這個三角形是直角三角形;

其中正確的命題有( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在以下說法中:實數(shù)分為正有理數(shù)、、負有理數(shù).實數(shù)和數(shù)軸上的點一一對應.過直線外一點有且只有一條直線和已知直線垂直.過一點有且只有一條直線和已知直線 平行.假命題不是命題.如果兩條直線都和第三條直線平行,那么這兩條直線也互相平 行.若一個數(shù)的立方根和平方根相同,那么這個數(shù)只能是 其中說法正確的個數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2﹣2ax+c(a≠0)交x軸于A,B兩點,A點坐標為(3,0),與y軸交于點C(0,4),以OC、OA為邊作矩形OADC交拋物線于點G.

(1)求拋物線的解析式;
(2)拋物線的對稱軸l在邊OA(不包括O、A兩點)上平行移動,分別交x軸于點E,交CD于點F,交AC于點M,交拋物線于點P,若點M的橫坐標為m,請用含m的代數(shù)式表示PM的長;
(3)在(2)的條件下,連結(jié)PC,則在CD上方的拋物線部分是否存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似?若存在,求出此時m的值,并直接判斷△PCM的形狀;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案