【題目】仔細閱讀下面的解題過程,并完成填空:如圖13,AD為△ABC的中線,已知AD=4cm,試確定AB+AC的取值范圍.
解:延長AD到E,使DE = AD,連接BE.
因為AD為△ABC的中線,
所以BD=CD.
在△ACD和△EBD中,因為AD=DE,∠ADC=∠EDB,CD=BD,所以△ACD≌△EBD(__________).
所以BE=AC(_____________________).
因為AB+BE>AE(_____________________),
所以AB+AC>AE.
因為AE=2AD=8cm,
所以AB+AC>_______cm.
科目:初中數(shù)學 來源: 題型:
【題目】某中學開展以“我最喜愛的傳統(tǒng)文化”為主題的調(diào)查活動,從“詩詞、國畫、對聯(lián)、書法、戲曲”五種傳統(tǒng)文化中,選取喜歡的一種(只選一種)進行調(diào)查,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整統(tǒng)計圖.
(1)本次調(diào)查共抽取了多少名學生?
(2)喜歡“書法”的有多少名學生?并補全條形統(tǒng)計圖;
(3)求喜歡“國畫”對應扇形圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某電器商場銷售A、B兩種型號計算器,兩種計算器的進貨價格分別為每臺30元,40元,商場銷售5臺A型號和1臺B型號計算器,可獲利潤76元;銷售6臺A型號和3臺B型號計算器,可獲利潤120元.求商場銷售A、B兩種型號計算器的銷售價格分別是多少元?(利潤=銷售價格﹣進貨價格)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B=30°,邊AB的垂直平分線分別交AB和BC于點D,E,且AE平分∠BAC.
(1)求∠C的度數(shù);
(2)若CE=1,求AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某電視臺的一檔娛樂性節(jié)目中,在游戲PK環(huán)節(jié),為了隨機分選游戲雙方的組員,主持人設計了以下游戲:用不透明的白布包住三根顏色長短相同的細繩AA1、BB1、CC1,只露出它們的頭和尾(如圖所示),由甲、乙兩位嘉賓分別從白布兩端各選一根細繩,并拉出,若兩人選中同一根細繩,則兩人同隊,否則互為反方隊員.
(1)若甲嘉賓從中任意選擇一根細繩拉出,求他恰好抽出細繩AA1的概率;
(2)請用畫樹狀圖法或列表法,求甲、乙兩位嘉賓能分為同隊的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對應邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關系式和拋物線的頂點D坐標(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知□ABCD的對角線AC、BD交于O,且∠1=∠2.
(1)求證:□ABCD是菱形;
(2)F為AD上一點,連結(jié)BF交AC于E,且AE=AF.求證:AO=(AF+AB).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖,正方形ABCD中,∠PCG=45°,且PD=BG,求證:FP=FC.
(2)如圖,正方形ABCD中,∠PCG=45°,延長PG交CB的延長線于點F,(1)中的結(jié)論還成立嗎?請說明理由.
(3)在(2)的條件下,作FE⊥PC,垂足為E,交CG于點N,連接DN,求∠NDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,E為CD上一點,F為BC延長線上一點,CE=CF.
(1)△DCF可以看作是△BCE繞點C旋轉(zhuǎn)某個角度得到的嗎?
(2)若∠CEB=60°,求∠EFD的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com