【題目】給出定義,若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱該四邊形為勾股四邊形.

1)在你學(xué)過的特殊四邊形中,寫出兩種勾股四邊形的名稱;

2)如圖,將△ABC繞頂點B按順時針方向旋轉(zhuǎn)60°得到△DBE,連接AD,DC,CE,已知∠DCB=30°

求證:△BCE是等邊三角形;

求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.

【答案】(1)正方形、矩形、直角梯形均可;

(2)①證明見解析

證明見解析

【解析】

試題(1)根據(jù)定義和特殊四邊形的性質(zhì),則有矩形或正方形或直角梯形;

2首先證明△ABC≌△DBE,得出AC=DE,BC=BE,連接CE,進一步得出△BCE為等邊三角形;

利用等邊三角形的性質(zhì),進一步得出△DCE是直角三角形,問題得解.

試題解析:(1)正方形、矩形、直角梯形均可;

2①∵△ABC≌△DBE,

∴BC=BE,

∵∠CBE=60°,

∴△BCE是等邊三角形;

②∵△ABC≌△DBE,

∴BE=BC,AC=ED;

∴△BCE為等邊三角形,

∴BC=CE,∠BCE=60°

∵∠DCB=30°,

∴∠DCE=90°,

Rt△DCE中,

DC2+CE2=DE2,

∴DC2+BC2=AC2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤中,指針位置固定,三個扇形的面積都相等,且分別標有數(shù)字1,2,3.

(1)小明轉(zhuǎn)動轉(zhuǎn)盤一次,當轉(zhuǎn)盤停止轉(zhuǎn)動時,指針所指扇形中的數(shù)字是奇數(shù)的概率為________;

(2)小明先轉(zhuǎn)動轉(zhuǎn)盤一次,當轉(zhuǎn)盤停止轉(zhuǎn)動時,記錄下指針所指扇形中的數(shù)字;接著再轉(zhuǎn)動轉(zhuǎn)盤一次,當轉(zhuǎn)盤停止轉(zhuǎn)動時,再次記錄下指針所指扇形中的數(shù)字,求這兩個數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲進行了10次射苦練,平均成績?yōu)?/span>9環(huán),且前9次的成績(單位:環(huán))依次為:8,10,9,10,7,9,10,8,10.

(1)求甲第10次的射擊成績:

(2:求甲這10次射擊成績的方差:

(3)乙在相同情況下也進行了10次射擊訓(xùn)練,平均成績?yōu)?/span>9環(huán),方差為1.6環(huán),請問從甲和乙兩個人中選一個去參加比賽,你認為哪個去更合適?并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點F從菱形ABCD的頂點A出發(fā),沿A→D→B1cm/s的速度勻速運動到點B,圖2是點F運動時,FBC的面積y(cm2)隨時間x(s)變化的關(guān)系圖象,則a的值為( 。

A. B. 2 C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,點E、F分別在邊BC、CD上,且∠EAF=CFF=45°

(1) ADF繞點A順時針旋轉(zhuǎn)90 °,得到ABG(如圖1),求證:BE+DF=EF;

(2) 若直線EFAB、AD的延長線分別交于點M、N(如圖2),求證:

(3) 將正方形改為長與寬不相等的矩形,其余條件不變(如圖3),直接寫出線段EF、BE、DF之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AC為對角線,EAB上一點,過點EEF∥AD,與AC,DC分別交于點G,F(xiàn),HCG的中點,連接DE,EH,DH,F(xiàn)H.下列結(jié)論中結(jié)論正確的有(

①EG=DF;

②∠AEH+∠ADH=180°;

③△EHF≌△DHC;

,則SEDH=13SCFH .

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD平分BC平分ADF

(1)說明四邊形AECF為平行四邊形;

(2)求四邊形AECF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是正方形,是等邊三角形,為對角線(不含點)上任意一點,將繞點逆時針旋轉(zhuǎn)得到,連接

1)證明:;

2)當點在何處時,的值最小,并說明理由;

3)當的最小值為時,則正方形的邊長為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國際上通常用恩格爾系數(shù)(記作n)來衡量一個國家和地區(qū)人民的生活水平的狀況,它的計算公式:n=x/y(x:家庭食品支出總額;y:家庭消費支出總額).各種家庭類型的n如下表:

已知王先生居住地2008年比2003年食品價格上升了25%,該家庭在2008年購買食品和2003年完全相同的情況下多支出2000元,并且y=2x+3600(單位:元),則該家庭2003年屬于(  )

家庭類型

貧困

溫飽

小康

富裕

n

n>60%

50%<n≤60%

40%<n≤50%

30%<n≤40%

A. 貧困 B. 溫飽 C. 小康 D. 富裕

查看答案和解析>>

同步練習(xí)冊答案