【題目】甲進(jìn)行了10次射苦練,平均成績(jī)?yōu)?/span>9環(huán),且前9次的成績(jī)(單位:環(huán))依次為:8,10,9,10,7,9,10,8,10.

(1)求甲第10次的射擊成績(jī):

(2:求甲這10次射擊成績(jī)的方差:

(3)乙在相同情況下也進(jìn)行了10次射擊訓(xùn)練,平均成績(jī)?yōu)?/span>9環(huán),方差為1.6環(huán),請(qǐng)問從甲和乙兩個(gè)人中選一個(gè)去參加比賽,你認(rèn)為哪個(gè)去更合適?并說明理由。

【答案】(1)9環(huán);(2)1;(3)甲的射擊成績(jī)更穩(wěn)定理由見解析

【解析】

(1)用甲射擊的總環(huán)數(shù)減去前9次射擊的總環(huán)數(shù)可得;

(2)根據(jù)方差的計(jì)算公式可得;

(3)根據(jù)方差的意義可得答案.

(1)根據(jù)題意,甲第10次的射擊成績(jī)?yōu)?/span>9×10-(8+10+9+10+7+9+10+8+10)=9環(huán)

(2)甲這10次射擊成績(jī)的方差為×[4×(10-9)2+3×(9-9)2+2×(8-9)2+(7-9)2]=1;

(3)∵平均成績(jī)相等,而甲的方差小于乙的方差,

∴甲的射擊成績(jī)更穩(wěn)定.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD,AB=6,BC=8,E,F(xiàn)分別是AB,BC的中點(diǎn),AF與DE相交于I,與BD相交于H,則四邊形BEIH的面積為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果經(jīng)銷商上月份銷售一種新上市的水果,平均售價(jià)為10/千克,月銷售量為1000千克.經(jīng)市場(chǎng)調(diào)查,若將該種水果價(jià)格調(diào)低至x/千克,則本月份銷售量y(千克)與x(元/千克)之間符合一次函數(shù)關(guān)系,并且得到了表中的數(shù)據(jù):

價(jià)格x(元/千克)

7

5

價(jià)格y(千克)

2000

4000

1)求yx之間的函數(shù)解析式;

2)已知該種水果上月份的成本價(jià)為5/千克,本月份的成本價(jià)為4/千克,要使本月份銷售該種水果所獲利潤(rùn)比上月份增加20%,同時(shí)又要讓顧客得到實(shí)惠,那么該種水果價(jià)格每千克應(yīng)調(diào)低至多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知MB=ND,∠MBA=NDC,下列哪個(gè)條件不能判定ABM≌△CDN

A.AM=CNB.AB=CD C.AMCN D.M=N

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一塊直角三角形的紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,則CD等于(   .

A. 2 cm B. 4 cm C. 3 cm D. 5 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人參加從地到地的長(zhǎng)跑比賽,兩人在比賽時(shí)所跑的路程()與時(shí)間(分鐘)之間的函數(shù)關(guān)系如圖所示,請(qǐng)你根據(jù)圖象,回答下列題:

1________(填“甲”或“乙”)先到達(dá)終點(diǎn);甲的速度是________/分鐘;

2)求甲與乙相遇時(shí),他們離地多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)的圖象與軸交于點(diǎn),與軸交于點(diǎn)

1)求兩點(diǎn)的坐標(biāo);

2)點(diǎn),在該函數(shù)的圖象上,比較的大;

3)將直線向下平移3個(gè)單位,與直線交于點(diǎn),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給出定義,若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對(duì)角線的平方,則稱該四邊形為勾股四邊形.

1)在你學(xué)過的特殊四邊形中,寫出兩種勾股四邊形的名稱;

2)如圖,將△ABC繞頂點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)60°得到△DBE,連接ADDC,CE,已知∠DCB=30°

求證:△BCE是等邊三角形;

求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,將△ABC沿直線MN翻折后,頂點(diǎn)C恰好落在邊AB上的點(diǎn)D處,已知MN∥AB,MC=6,NC=2,則四邊形MABN的面積是___________.

查看答案和解析>>

同步練習(xí)冊(cè)答案