【題目】矩形ABCD平分BC平分ADF

(1)說明四邊形AECF為平行四邊形;

(2)求四邊形AECF的面積.

【答案】(1)見解析;(2)30cm2

【解析】試題分析:

(1)由四邊形ABCD是矩形可得AD∥BC(AF∥CE),AB∥CD,由此可得∠BAC=∠ACD,結(jié)合AE平分∠BAC,CF平分∠ACD可得∠EAC=∠FCA,即可得到AE∥CF,從而可得四邊形AECF是平行四邊形;

(2)如圖,過點(diǎn)EEO⊥AC于點(diǎn)O,結(jié)合∠B=90°及AE平方∠BAC可得EO=EB,證Rt△ABE≌Rt△AOE可得AO=AB=6,Rt△ABC中由勾股定理易得AC=10,從而可得OC=4,設(shè)CE=x,則EO=BE=BC-CE=8-x,這樣在Rt△OEC中由勾股定理建立方程,解方程即可求得CE的值,這樣就可求出四邊形AECF的面積了.

試題解析

(1)∵四邊形ABCD是矩形,

∴AD∥BC(即AF∥CE),AB∥CD,

∴∠BAC=∠ACD,

∵AE平分∠BAC,CF平分∠ACD,

∴∠EAC=∠FCA,

∴AE∥CF,

∴四邊形AECF是平行四邊形;

(2)過點(diǎn)EEO⊥AC于點(diǎn)O,

∵∠B=90°,AE平分∠BAC,

∴EO=BO,

∵AE=AE,

∴Rt△ABE≌Rt△AOE,

∴AO=AB=6,

Rt△ABC,AC=,

∴OC=AC-AO=4(cm),

設(shè)CE=x,則EO=BE=BC-CE=8-x,

Rt△OEC中由勾股定理可得:,解得:

∴EC=5,

∴S四邊形AECF=CE·AB=5×6=30(cm2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)動(dòng)點(diǎn)P在平面直角坐標(biāo)系中按箭頭所示方向作折線運(yùn)動(dòng),即第一次從原點(diǎn)運(yùn)動(dòng)到(1,1),第二次從(1,1)運(yùn)動(dòng)到(2,0),第三次從(2,0)運(yùn)動(dòng)到(3,2),第四次從(3,2)運(yùn)動(dòng)到(4,0),第五次從(40)運(yùn)動(dòng)到(5,1),……,按這樣的運(yùn)動(dòng)規(guī)律,經(jīng)過第2013次運(yùn)動(dòng)后,動(dòng)點(diǎn)P的坐標(biāo)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)家吳文俊院士非常重視古代數(shù)學(xué)家賈憲提出的從長方形對(duì)角線上任一點(diǎn)作兩條分別平行于兩鄰邊的直線,則所容兩長方形面積相等(如圖所示)這一推論,他從這一推論出發(fā),利用出入相補(bǔ)原理復(fù)原了《海島算經(jīng)》九題古證,根據(jù)圖形可知他得出的這個(gè)推論指(

A. S矩形ABMNS矩形MNDCB. S矩形EBMFS矩形AEFN

C. S矩形AEFNS矩形MNDCD. S矩形EBMFS矩形NFGD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,分別平分的外角、內(nèi)角、外角.以下結(jié)論:①;②;③平分;④;⑤.其中正確的結(jié)論有( ).

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】知識(shí)再現(xiàn):已知,如圖,四邊形ABCD是正方形,點(diǎn)M、N分別在邊BC、CD上,連接AM、AN、MN,∠MAN45°,延長CBG使BGDN,連接AG,根據(jù)三角形全等的知識(shí),我們可以證明MNBM+DN

知識(shí)探究:(1)在如圖中,作AHMN,垂足為點(diǎn)H,猜想AHAB有什么數(shù)量關(guān)系?并證明;

知識(shí)應(yīng)用:(2)如圖,已知∠BAC45°,ADBC于點(diǎn)D,且BD2AD6,則CD的長為

知識(shí)拓展:(3)如圖,四邊形ABCD是正方形,E是邊BC的中點(diǎn),F為邊CD上一點(diǎn),∠FEC2BAE,AB=24,求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AB=8cm,AD=12cm,點(diǎn)P在AD邊上以每秒1cm 的速度從點(diǎn)A向點(diǎn)D運(yùn)動(dòng),點(diǎn)Q在BC邊上,以每秒4cm的速度從點(diǎn)C出發(fā),在CB間往返運(yùn)動(dòng),兩個(gè)點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)P到達(dá)點(diǎn)D時(shí)停止(同時(shí)點(diǎn)Q也停止),在運(yùn)動(dòng)以后,以P、D、Q、B四點(diǎn)組成平行四邊形的次數(shù)有__次.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),正方形OABC的邊OA、OC分別在x軸、y軸上,點(diǎn)B的坐標(biāo)為(2,2),反比例函數(shù)(x0,k0)的圖象經(jīng)過線段BC的中點(diǎn)D.

(1)求k的值;

(2)若點(diǎn)P(x,y)在該反比例函數(shù)的圖象上運(yùn)動(dòng)(不與點(diǎn)D重合),過點(diǎn)PPRy軸于點(diǎn)R,作PQBC所在直線于點(diǎn)Q,記四邊形CQPR的面積為S,求S關(guān)于x的解析式并寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中, ,高 相交于點(diǎn), ,且 .

(1)求線段 的長;

(2)動(dòng)點(diǎn) 從點(diǎn) 出發(fā),沿線段 以每秒 1 個(gè)單位長度的速度向終點(diǎn) 運(yùn)動(dòng),動(dòng)點(diǎn) 點(diǎn) 出發(fā)沿射線 以每秒 4 個(gè)單位長度的速度運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn) 到達(dá) 點(diǎn)時(shí), 兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn) 的運(yùn)動(dòng)時(shí)間為 秒,的面積為 ,請(qǐng)用含 的式子表示 ,并直接寫出相應(yīng)的 的取值范圍;

(3)(2)的條件下,點(diǎn) 是直線上的一點(diǎn)且 .是否存在 值,使以點(diǎn) 為頂 點(diǎn)的三角形與以點(diǎn) 為頂點(diǎn)的三角形全等?若存在,請(qǐng)直接寫出符合條件的 ; 若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案