【題目】如圖,用一張高為30,寬為的長方形打印紙打印文檔,如果左右的頁邊距都為,上下頁邊距比左右頁邊距多.

1)請用的代數(shù)式表示中間打印部分的面積.

2)當(dāng)時,中間打印部分的面積是多少平方厘米?

【答案】14x2-96x+560;(2384cm2.

【解析】

1)分別用含x的代數(shù)式表示出中間打印部分的高和寬,利用長方形面積公式即可得答案;(2)把x=2代入(1)中代數(shù)式,即可得答案.

1)∵左右的頁邊距都為,上下頁邊距比左右頁邊距多,

∴中間打印部分的高為30-2(x+1)=28-2x,寬為20-2x,

∴中間打印部分的面積為(28-2x)(20-2x)=4x2-96x+560.

2)由(1)得中間打印部分的面積為4x2-96x+560,

∴當(dāng)x=2時,中間打印部分的面積為4×22-96×2+560=384(cm2).

答:當(dāng)x=2時,中間打印部分的面積是384cm2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,天星山山腳下西端A處與東端B處相距800(1+)米,小軍和小明同時分別從A處和B處向山頂C勻速行走.已知山的西端的坡角是45°,東端的坡角是30°,小軍的行走速度為/秒.若小明與小軍同時到達(dá)山頂C處,則小明的行走速度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,垂足為,點(diǎn)上,,垂足為

(1)平行嗎?為什么?

(2)如果,且,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),菱形的對角線軸上,兩點(diǎn)分別在第一象限和第四象限.直線的解析式為

(1)如圖1,求點(diǎn)的坐標(biāo);

(2)如圖2,為射線上一動點(diǎn)(不與點(diǎn)和點(diǎn)重合),過點(diǎn)軸交直線于點(diǎn).設(shè)線段的長度為,點(diǎn)的橫坐標(biāo)為,求的函數(shù)關(guān)系式,并直接寫出自變量的取值范圍;

(3)如圖3,在(2)的條件下,當(dāng)點(diǎn)運(yùn)動到線段的延長線上時,連接軸于點(diǎn),連接,,延長于點(diǎn),過軸于點(diǎn),的角平分線軸于點(diǎn),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=x2+mx+2m﹣7的圖象經(jīng)過點(diǎn)(10).

1)求拋物線的表達(dá)式;

2)把﹣4x1時的函數(shù)圖象記為H,求此時函數(shù)y的取值范圍;

3)在(2)的條件下,將圖象Hx軸下方的部分沿x軸翻折,圖象H的其余部分保持不變,得到一個新圖象M.若直線y=x+b與圖象M有三個公共點(diǎn),求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在某建筑物AC上,掛著一宣傳條幅BC,站在點(diǎn)F處,測得條幅頂端B的仰角為300,往條幅方向前行20米到達(dá)點(diǎn)E處,測得條幅頂端B的仰角為600,求宣傳條幅BC的長.,結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】初三年級的一場籃球比賽中,如圖隊(duì)員甲正在投籃,已知球出手時離地面高m,與籃圈中心的水平距離為7m,當(dāng)球出手后水平距離為4m時到達(dá)最大高度4m,設(shè)籃球運(yùn)行的軌跡為拋物線,籃圈距地面3m

1)建立如圖所示的平面直角坐標(biāo)系,求拋物線的解析式并判斷此球能否準(zhǔn)確投中?

2)此時,若對方隊(duì)員乙在甲前面1m處跳起蓋帽攔截,已知乙的最大摸高為3.1m,那么他能否獲得成功?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,,結(jié)論:①;②;③;④,其中正確的是有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙3名學(xué)生各自隨機(jī)選擇到A、B 2個書店購書.

1)求甲、乙2名學(xué)生在不同書店購書的概率;

2)求甲、乙、丙3名學(xué)生在同一書店購書的概率.

查看答案和解析>>

同步練習(xí)冊答案