【題目】如圖,△ABC中,∠ACB90°,AB10cmBC6cm,若點P從點A出發(fā)以每秒1cm的速度向點C運動,設(shè)運動時間為t秒(t0).

1)若點P恰好在∠ABC的角平分線上,求出此時t的值;

2)若點P使得PB+PCAC時,求出此時t的值.

【答案】15;(2

【解析】

1)作PDABD,如圖,AP=t,先利用勾股定理計算出AC=8,再根據(jù)角平分線的性質(zhì)得到PC=PD=8-t,利用三角形面積公式得到×10×8-t+×6×8-t=×6×8,然后解方程即可;
2)先證明PB=PA=t,再利用勾股定理得到(8-t2+62=t2,然后解方程即可.

1)作PDABD,如圖,AP=t,


∵∠ACB=90°,AB=10,BC=6,
AC=,
BP平分∠ABC,
PC=PD=8-t
SABP+SBCP=SABC,
×10×8-t+×6×8-t=×6×8
解得t=5,
即此時t的值為5;
2)∵PB+PC=AC,PA+PC=AC
PB=PA=t,
RtBCP中,∵PC2+BC2=BP2,
∴(8-t2+62=t2,解得t=,
即此時t的值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,平分于點,點、分別是、的中點,連接,且.

(1) 求證:;

(2)連接,若,,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市推出電腦上網(wǎng)包月制,每月收取費用y(元)與上網(wǎng)時間x(小時)的函數(shù)關(guān)系如圖所示,其中BA是線段,且BAx軸,AC是射線.

(1)當(dāng)x30,求y與x之間的函數(shù)關(guān)系式;

(2)若小李4月份上網(wǎng)20小時,他應(yīng)付多少元的上網(wǎng)費用?

(3)若小李5月份上網(wǎng)費用為75元,則他在該月份的上網(wǎng)時間是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知,點、分別是直線、上的兩點.將射線繞點順時針勻速旋轉(zhuǎn),將射線繞點順時針勻速旋轉(zhuǎn),旋轉(zhuǎn)后的射線分別記為、,已知射線、射線旋轉(zhuǎn)的速度之和為6/.

1)射線先轉(zhuǎn)動得到射線,然后射線、再同時旋轉(zhuǎn)10秒,此時射線與射線第一次出現(xiàn)平行.求射線的旋轉(zhuǎn)速度;

2)若射線、分別以(1)中速度同時轉(zhuǎn)動秒,在射線與射線重合之前,設(shè)射線與射線交于點,過點于點,設(shè),如圖2所示.

①當(dāng)時,求、滿足的數(shù)量關(guān)系;

②當(dāng)時,求滿足的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把一副三角板如圖甲放置,其中ACB=DEC=90°,A=45°,D=30°,AB=6cm,DC=7cm.把三角板DCE繞點C順時針旋轉(zhuǎn)15°得到D′CE′,如圖乙,這時AB與CD′相交于點O,D′E′與AB、CB分別相交于點F、G,連接AD′.

(1)求OFE′的度數(shù);

(2)求線段AD′的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:中,,求證:,下面寫出可運用反證法證明這個命題的四個步驟:

①∴,這與三角形內(nèi)角和為矛盾,②因此假設(shè)不成立.∴,③假設(shè)在中,,④由,得,即.這四個步驟正確的順序應(yīng)是( 。

A.③④②①B.③④①②C.①②③④D.④③①②

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的對稱軸為x=2,且經(jīng)過點(1,4)和(5,0),試求該拋物線的表達(dá)式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】作圖:

(1)如圖甲,以點O為中心,把點P順時針旋轉(zhuǎn)45°;

(2)如圖乙,以點O為中心,把線段AB逆時針旋轉(zhuǎn)90°;

(3)如圖丙,以點O為中心,把ABC順時針旋轉(zhuǎn)120°;

(4)如圖丁,以點B為中心,把ABC旋轉(zhuǎn)180°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在⊙O中,AB= 4,AC是⊙O的直徑,AC⊥BD于F,∠A=30°.

⑴求圖中陰影部分的面積;

⑵若用陰影扇形OBD圍成一個圓錐側(cè)面,請求出這個圓錐底面圓的半徑.

查看答案和解析>>

同步練習(xí)冊答案