【題目】如圖,在平面直角坐標(biāo)系中,的直角頂點(diǎn)A在軸上,OB=5,OA=4,動(dòng)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位長度的速度,沿AO向終點(diǎn)O運(yùn)動(dòng),同時(shí)點(diǎn)N從點(diǎn)O出發(fā),以每秒2個(gè)單位長度的速度,沿OB向終點(diǎn)B移動(dòng),當(dāng)兩個(gè)動(dòng)點(diǎn)運(yùn)動(dòng)了秒時(shí),解答下列問題:
(1)若點(diǎn)B在反比例函數(shù)的圖象上,求出該函數(shù)的解析式;
(2)在兩個(gè)動(dòng)點(diǎn)運(yùn)動(dòng)過程中,當(dāng)為何值時(shí),使得以O,M,N為頂點(diǎn)的三角形與相似?
【答案】(1) ;(2)當(dāng)或秒時(shí),使得以O,M,N為頂點(diǎn)的三角形與相似.
【解析】
(1)利用勾股定理求出AB,得出B的坐標(biāo),再把B的坐標(biāo)代入解析式即可解答;
(2)在兩個(gè)動(dòng)點(diǎn)運(yùn)動(dòng)過程中,分兩種情況:①若,得出 ,利用相似比的性質(zhì)進(jìn)行解答即可;②若,得出,利用相似比的性質(zhì)進(jìn)行解答即可;
(1)是直角三角形,且軸于A,OA=4,OB=5
將B(4,3)代入得
(2)在兩個(gè)動(dòng)點(diǎn)運(yùn)動(dòng)過程中,分兩種情況:
①若,如圖所示,
則MN∥AB,此時(shí)
即:
②若,如圖所示,
則,此時(shí),
即:
綜上所述,當(dāng)或秒時(shí),使得以O,M,N為頂點(diǎn)的三角形與相似
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,中線BE、CD相交于點(diǎn)O,連接DE,下列結(jié)論:①;②;③;④;其中正確的個(gè)數(shù)有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(8,1),B(0,﹣3),反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)A,動(dòng)直線x=t(0<t<8)與反比例函數(shù)的圖象交于點(diǎn)M,與直線AB交于點(diǎn)N.
(1)求k的值;
(2)當(dāng)t=4時(shí),求△BMN面積;
(3)若MA⊥AB,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標(biāo)系,一條圓弧經(jīng)過網(wǎng)格點(diǎn)A、B、C,請?jiān)诰W(wǎng)格中進(jìn)行下列操作:
(1)請?jiān)趫D中確定該圓弧所在圓心D點(diǎn)的位置,D點(diǎn)坐標(biāo)為 ;
(2)連接AD、CD,則⊙D的半徑為 ;扇形DAC的圓心角度數(shù)為 ;
(3)若扇形DAC是某一個(gè)圓錐的側(cè)面展開圖,求該圓錐的底面半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個(gè)小正方形的邊長是一個(gè)單位長度).
(1)畫出△ABC向下平移4個(gè)單位長度得到的△A1B1C1,點(diǎn)C1的坐標(biāo)是 ;
(2)以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點(diǎn)C2的坐標(biāo)是 ;
(3)△A2B2C2的面積是 平方單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程(m為常數(shù))
(1)求證:不論m為何值,方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)若方程有一個(gè)根是2,求m的值及方程的另一個(gè)根。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】射線QN與等邊△ABC的兩邊AB,BC分別交于點(diǎn)M,N,且AC∥QN,AM=MB=2cm,QM=4cm.動(dòng)點(diǎn)P從點(diǎn)Q出發(fā),沿射線QN以每秒1cm的速度向右移動(dòng),經(jīng)過t秒,以點(diǎn)P為圓心,cm為半徑的圓與△ABC的邊相切(切點(diǎn)在邊上),請寫出t可取的一切值 (單位:秒)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面內(nèi),C為線段AB外的一點(diǎn),若以A,B,C為頂點(diǎn)的三角形為直角三角形,則稱C為線段AB的直角點(diǎn). 特別地,當(dāng)該三角形為等腰直角三角形時(shí),稱C為線段AB的等腰直角點(diǎn).
(1)如圖1,在平面直角坐標(biāo)系xOy中,點(diǎn)M的坐標(biāo)為,在點(diǎn)P1,P2,P3中,線段OM的直角點(diǎn)是 ;
(2)在平面直角坐標(biāo)系xOy中,點(diǎn)A,B的坐標(biāo)分別為,,直線l的解析式為.
①如圖2,C是直線l上的一個(gè)動(dòng)點(diǎn),若C是線段AB的直角點(diǎn),求點(diǎn)C的坐標(biāo);
②如圖3,P是直線l上的一個(gè)動(dòng)點(diǎn),將所有線段AP的等腰直角點(diǎn)稱為直線l關(guān)于點(diǎn)A的伴隨點(diǎn).若⊙O的半徑為r,且⊙O上恰有兩個(gè)點(diǎn)為直線l關(guān)于點(diǎn)A的伴隨點(diǎn),直接寫出r的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com