【題目】二次函數中與的部分對應值如下表所示,則下列結論錯誤的是( )
-1 | 0 | 1 | 3 | |
-1 | 3 | 5 | 3 |
A.B.當時,的值隨值的增大而減小
C.當時,D.3是方程的一個根
科目:初中數學 來源: 題型:
【題目】已知:如圖,在△ABC中,點D在邊BC上,AE∥BC,BE與AD、AC分別相交于點F、G, .
(1)求證:△CAD∽△CBG;
(2)聯結DG,求證:.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,BD是平行四邊形ABCD的對角線,DE⊥AB于點E,過點E的直線交BC于點G,且BG=CG.
(1)求證:GD=EG.
(2)若BD⊥EG垂足為O,BO=2,DO=4,畫出圖形并求出四邊形ABCD的面積.
(3)在(2)的條件下,以O為旋轉中心順時針旋轉△GDO,得到△G′D'O,點G′落在BC上時,請直接寫出G′E的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線經過,兩點,與y軸交于點C,連接AB,AC,BC.
求拋物線的表達式;
求證:AB平分;
拋物線的對稱軸上是否存在點M,使得是以AB為直角邊的直角三角形,若存在,求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,O是正△ABC內一點,OA=6,OB=8,OC=10,將線段BO以點B為旋轉中心逆時針旋轉60°得到線段BO',下列結論:①△BO'A可以由△BOC繞點B逆時針旋轉60°得到;②點O與O′的距離為6;③∠AOB=150°;④S△BOC=12+6; ⑤S四邊形AOBO′=24+12.其中正確的結論是_____.(填序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與軸相交于兩點(點在點的左側),與軸相交于點.拋物線上有一點,且.
(1)求拋物線的解析式和頂點坐標.
(2)當點位于軸下方時,求面積的最大值.
(3)①設此拋物線在點與點之間部分(含點和點)最高點與最低點的縱坐標之差為.求關于的函數解析式,并寫出自變量的取值范圍;
②當時,點的坐標是___________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一不透明的布袋里,裝有紅、黃、藍三種顏色的小球(除顏色外其余都相同),其中有紅球2個,藍球1個,黃球若干個,現從中任意摸出一個球是紅球的概率為.
(1)求口袋中黃球的個數;
(2)甲同學先隨機摸出一個小球(不放回),再隨機摸出一個小球,請用“樹狀圖法”或“列表法”,
求兩次摸 出都是紅球的概率;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,BD是△ABC的角平分線,點E位于邊BC上,已知BD是BA與BE的比例中項.
(1)求證:∠CDE=∠ABC;
(2)求證:ADCD=ABCE.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+c與x軸交于點A(﹣1,0)、C(3,0),點B為拋物線頂點,直線BD為拋物線的對稱軸,點D在x軸上,連接AB、BC,∠ABC=90°,AB與y軸交于點E,連接CE.
(1)求項點B的坐標并求出這條拋物線的解析式;
(2)點P為第一象限拋物線上一個動點,設△PEC的面積為S,點P的橫坐標為m,求S關于m的函數關系武,并求出S的最大值;
(3)如圖2,連接OB,拋物線上是否存在點Q,使直線QC與直線BC所夾銳角等于∠OBD,若存在請直接寫出點Q的坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com