【題目】學(xué)生對(duì)待學(xué)習(xí)的態(tài)度一直是教育工作者關(guān)注的問(wèn)題之一.為此,某區(qū)教委對(duì)該區(qū)部分學(xué)校的八年級(jí)學(xué)生對(duì)待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個(gè)層級(jí),A級(jí):對(duì)學(xué)習(xí)很感興趣;B級(jí):對(duì)學(xué)習(xí)較感興趣;C級(jí):對(duì)學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計(jì)圖(不完整).請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
(2)將圖①補(bǔ)充完整;
(3)求出圖②中C級(jí)所占的圓心角的度數(shù).
【答案】(1)200,(2)圖見(jiàn)試題解析 (3)540
【解析】
試題(1)根據(jù)A級(jí)的人數(shù)與所占的百分比列式進(jìn)行計(jì)算即可求出被調(diào)查的學(xué)生人數(shù);
(2)根據(jù)總?cè)藬?shù)求出C級(jí)的人數(shù),然后補(bǔ)全條形統(tǒng)計(jì)圖即可;
(3)1減去A、B兩級(jí)所占的百分比乘以360°即可得出結(jié)論.
試題解析::(1)調(diào)查的學(xué)生人數(shù)為:=200名;
(2)C級(jí)學(xué)生人數(shù)為:200-50-120=30名,
補(bǔ)全統(tǒng)計(jì)圖如圖;
(3)學(xué)習(xí)態(tài)度達(dá)標(biāo)的人數(shù)為:360×[1-(25%+60%]=54°.
答:求出圖②中C級(jí)所占的圓心角的度數(shù)為54°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在圓心角為90°的扇形OAB中,半徑OA=4cm,C為弧AB的中點(diǎn),D是OA的中點(diǎn),則圖中陰影部分的面積為________cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四邊形ABCD中,AD//BC,∠A=90°,AB=12,BC=21,AD=16.動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿射線BC的方向以每秒2個(gè)單位長(zhǎng)的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q同時(shí)從點(diǎn)A出發(fā),在線段AD上以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)D運(yùn)動(dòng),當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí)另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t(秒).
(1)設(shè)△DPQ的面積為S,求S與t之間的函數(shù)關(guān)系式;
(2)分別求出出當(dāng)t為何值時(shí),①PD=PQ,②DQ=PQ?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了豐富學(xué)生課余生活,計(jì)劃開(kāi)設(shè)以下課外活動(dòng)項(xiàng)目:A—版畫(huà),B—機(jī)器人,C—航模,D—園藝種植.為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查(每位學(xué)生必須選且只能選一個(gè)項(xiàng)目),并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)回答下列問(wèn)題:
(1)這次被調(diào)查的學(xué)生共有 人;扇形統(tǒng)計(jì)圖中,選“D—園藝種植”的學(xué)生人數(shù)所占圓心角的度數(shù)是 °
(2)請(qǐng)你將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校學(xué)生總數(shù)為1000人,試估計(jì)該校學(xué)生中最喜歡“機(jī)器人”和最喜歡“航模”項(xiàng)目的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,∠BAD=120°,CE⊥AD,且CE=BC,連接BE交對(duì)角線AC于點(diǎn)F,則∠EFC=_____°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料,完成(1)~(2)題:
數(shù)學(xué)課上,老師出示了一道題:如圖1,將一個(gè)直角三角板的直角邊擺放在直線上,然后以直角頂點(diǎn)為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)這個(gè)三角板.若射線平分、探究和的數(shù)量關(guān)系,并說(shuō)明經(jīng)過(guò)一段時(shí)間的思考后,同學(xué)們開(kāi)始了交流:
小明:我根據(jù)老師的敘述畫(huà)出圖2,并計(jì)算出當(dāng)時(shí),的度數(shù)是;
小紅:在小明的圖形中,點(diǎn)、都在的上方,我發(fā)現(xiàn),在這種情況下,始終在的內(nèi)部.若設(shè)的度數(shù)是,通過(guò)計(jì)算,的度數(shù)可以用含的式子表示,得到和的數(shù)量關(guān)系是;
小華:我除了畫(huà)小明的這種圖形,還畫(huà)了其余幾種,也分別得出和的數(shù)量關(guān)系,從而解決了老師提出的問(wèn)題.
老師:這些同學(xué)都先畫(huà)出圖形,再解決問(wèn)題,這體現(xiàn)了圖形的直性,但要注意一點(diǎn),在初中階段我們研究的角都是小于的.隨著大家交流的深入,點(diǎn)的位置由上方到直線外,的值由數(shù)字到字母,這體現(xiàn)了從特殊到一般的思想,同學(xué)們?cè)俑鶕?jù)小華所說(shuō)的進(jìn)行探究,還能歸納出其他的數(shù)學(xué)思想方法!
圖1 圖2
(1)如圖2,點(diǎn)、都在上方,.
①用含的代數(shù)式表示為_____________;
②小紅的“始終在的內(nèi)部”的說(shuō)法是正確的嗎,為什么?
(2)根據(jù)小華的敘述,寫(xiě)出與的數(shù)量關(guān)系并說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD的邊長(zhǎng)為4,P為BC邊上的動(dòng)點(diǎn),連接AP,作PQ⊥PA交CD邊于點(diǎn)Q.當(dāng)點(diǎn)P從B運(yùn)動(dòng)到C時(shí),線段AQ的中點(diǎn)M所經(jīng)過(guò)的路徑長(zhǎng)( 。
A. 2 B. 1 C. 4 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法:①必是負(fù)數(shù);②絕對(duì)值最小的數(shù)是0;③在數(shù)軸上,原點(diǎn)兩旁的兩個(gè)點(diǎn)表示的數(shù)必互為相反數(shù);④在數(shù)軸上,左邊的點(diǎn)比右邊的點(diǎn)所表示的數(shù)大,其中正確的有( )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:小明熱愛(ài)數(shù)學(xué),在課外書(shū)上看到了一個(gè)有趣的定理——“中線長(zhǎng)定理”:三角形兩邊的平方和等于第三邊的一半與第三邊上的中線的平方和的兩倍.如圖1,在△ABC中,點(diǎn)D為BC的中點(diǎn),根據(jù)“中線長(zhǎng)定理”,可得:
AB2+AC2=2AD2+2BD2.
小明嘗試對(duì)它進(jìn)行證明,部分過(guò)程如下:
解:過(guò)點(diǎn)A作AE⊥BC于點(diǎn)E,如圖2,在Rt△ABE中,AB2=AE2+BE2,
同理可得:AC2=AE2+CE2,AD2=AE2+DE2,
為證明的方便,不妨設(shè)BD=CD=x,DE=y,
∴AB2+AC2=AE2+BE2+AE2+CE2=……
(1)請(qǐng)你完成小明剩余的證明過(guò)程;
理解運(yùn)用:
(2) ① 在△ABC中,點(diǎn)D為BC的中點(diǎn),AB=6,AC=4,BC=8,則AD=_______;
② 如圖3,⊙O的半徑為6,點(diǎn)A在圓內(nèi),且OA=2,點(diǎn)B和點(diǎn)C在⊙O上,且∠BAC=90°,點(diǎn)E、F分別為AO、BC的中點(diǎn),則EF的長(zhǎng)為_(kāi)_______;
拓展延伸:
(3)小明解決上述問(wèn)題后,聯(lián)想到《能力訓(xùn)練》上的題目:如圖4,已知⊙O的半徑為5,以A(3,4)為直角頂點(diǎn)的△ABC的另兩個(gè)頂點(diǎn)B,C都在⊙O上,D為BC的中點(diǎn),求AD長(zhǎng)的最大值.請(qǐng)你利用上面的方法和結(jié)論,求出AD長(zhǎng)的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com