【題目】如圖,已知ABC的三個頂點(diǎn)坐標(biāo)如下表:

(1)將下表補(bǔ)充完整,并在直角坐標(biāo)系中,畫出A′B′C′;

(x,y)

(2x,2y)

A(2,1)

A′(4,2)

B(4,3)

B′( )

C(5,1)

C′( )

(2)觀察兩個三角形,可知ABC∽△A′B′C′兩個三角形的是以原點(diǎn)為位似中心的位似三角形,ABCA′B′C′的位似比為 .

【答案】(1)B′( 8,6 ),C′( 10,2 );(2)1:2

【解析】

(1)由表格所給倍數(shù)關(guān)系直接寫出;(2)由圖可知△ABC的一邊AC長度為3,恰好為CA點(diǎn)橫坐標(biāo)之差,故△A′B′C′A′C′的長也可如此求解,則可得到兩個三角形的相似比,即位似比.

解:(1)由表格所給數(shù)據(jù)可知B′點(diǎn)坐標(biāo)為(8,6),C’點(diǎn)坐標(biāo)為(10,2);

(2)由圖可知△ABC的邊AC長度為3,則△A′B′C′A′C′長為10-4=6,則相似比為1:2,

故位似比為:1:2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC,按以下步驟作圖:①分別以 BC 為圓心,以大于BC 的長為半徑作弧,兩弧相交于兩點(diǎn) MN;②作直線 MN AB 于點(diǎn) D,連接 CD.若 CD=AC,∠A=50°,則∠ACB 的度數(shù)為

A.90°B.95°C.105°D.110°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】己知四邊形為矩形,的角平分線交直線于點(diǎn),若,則的長為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,中點(diǎn)

1)若,求的周長和面積.

2)若,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC2,∠B=∠C40°,點(diǎn)D在線段BC上運(yùn)動(D不與B、C重合),連接AD,作∠ADE40°,DE交線段ACE

1)當(dāng)∠BDA115°時,∠EDC   °,∠DEC   °;點(diǎn)DBC運(yùn)動時,∠BDA逐漸變   (填“大”或“小”);

2)當(dāng)DC等于多少時,△ABD≌△DCE,請說明理由;

3)在點(diǎn)D的運(yùn)動過程中,△ADE的形狀可以是等腰三角形嗎?若可以,請直接寫出∠BDA的度數(shù).若不可以,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)中,四邊形OABC是梯形,且AB = OC = 4,CBOA,OA = 7,COA = 60°,點(diǎn)Px軸上的個動點(diǎn),點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連結(jié)CP,過點(diǎn)PPDAB于點(diǎn)D,

(1)求點(diǎn)B的坐標(biāo);

(2)當(dāng)點(diǎn)P運(yùn)動什么位置時,使得∠CPD =OAB,且,求這時點(diǎn)P的坐標(biāo);

(3)當(dāng)點(diǎn)P運(yùn)動什么位置時,OCP為等腰三角形,直接寫出這時點(diǎn)P的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中放置一菱形OABC,已知ABC=60°,OA=1.現(xiàn)將菱形OABC沿x軸的正方向無滑動翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)2018次,點(diǎn)B的落點(diǎn)依次為B1,B2,B3,B4,…,則B2018的坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個大小不同的等腰直角三角形三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,其中,,,、、在同一條直線上,連結(jié)

1)請?jiān)趫D2中找出與全等的三角形,并給予證明(說明:結(jié)論中不得含有未標(biāo)識的字母);

2)證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,以邊AB為直徑的⊙O經(jīng)過點(diǎn)C,E⊙O上的一點(diǎn),且∠BEC=45°.

(1)試判斷CD⊙O的位置關(guān)系,并說明理由;

(2)若BE=8cm,sin∠BCE= ,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊答案