【題目】下面是“作一個(gè)角”的尺規(guī)作圖過程.

已知:平面內(nèi)一點(diǎn)A

求作:,使得

作法:如圖,

1)作射線

2)在射線取一點(diǎn)O,以O為圓心,為半徑作圓,與射線相交于點(diǎn)C

3)以C為圓心,C為半徑作弧,與交于點(diǎn)D,作射線

即為所求的角.

請回答:該尺規(guī)作圖的依據(jù)是_________________

【答案】同圓或等圓半徑相等,三邊相等的三角形是三角形,等邊三角形的內(nèi)角是,一條弧所對的圓周角是它所對圓心角的一半.

【解析】

根據(jù)尺規(guī)作圖過程,進(jìn)行證明,即可得出結(jié)論.

解:證明:連接CD,OD

由圓的定義和尺規(guī)作圖得:OD=OC=CD,(圓的半徑都相等)

∴△OCD是等邊三角形,(三邊相等的三角形是三角形)

∴∠DOC=60°,(等邊三角形的內(nèi)角是

.(一條弧所對的圓周角是它所對圓心角的一半)

故答案為:同圓或等圓半徑相等,三邊相等的三角形是三角形,等邊三角形的內(nèi)角是,一條弧所對的圓周角是它所對圓心角的一半.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:正方形ABCD中,MAN=45°,∠MAN繞點(diǎn)A順時(shí)針旋轉(zhuǎn),它的兩邊分別交CBDC(或它們的延長線)于點(diǎn)M、N

(1)當(dāng)MAN繞點(diǎn)A旋轉(zhuǎn)到BM=DN時(shí)(如圖1),請你直接寫出BMDNMN的數(shù)量關(guān)系:__________

(2)當(dāng)MAN繞點(diǎn)A旋轉(zhuǎn)到BMDN時(shí)(如圖2),(1)中的結(jié)論是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明.

(3)當(dāng)MAN繞點(diǎn)A旋轉(zhuǎn)到如圖3的位置時(shí),線段BM、DNMN之間又有怎樣的數(shù)量關(guān)系?請寫出直接寫出結(jié)論

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2bx4y軸于點(diǎn)A,交過點(diǎn)A且平行于x軸的直線于另一點(diǎn)B,交x軸于CD兩點(diǎn)(點(diǎn)C在點(diǎn)D右邊),對稱軸為直線x,連接AC,ADBC.若點(diǎn)B關(guān)于直線AC的對稱點(diǎn)恰好落在線段OC上,下列結(jié)論中錯(cuò)誤的是(

A.點(diǎn)B坐標(biāo)為(54)B.ABADC.aD.OCOD16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,PBA延長線上一點(diǎn),點(diǎn)C在⊙O上,連接PC,D為半徑OA上一點(diǎn),PDPC,連接CD并延長交⊙O于點(diǎn)E,且E的中點(diǎn).

1)求證:PC是⊙O的切線;

2)求證:CDDE2ODPD;

3)若AB8,CDDE15,求PA的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為,點(diǎn)B的坐標(biāo)為,拋物線的頂點(diǎn)為C

1)若拋物線經(jīng)過點(diǎn)B時(shí),求頂點(diǎn)C的坐標(biāo);

2)若拋物線與線段恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,求a的取值范圍;

3)若滿足不等式x的最大值為3,直接寫出實(shí)數(shù)a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)C為線段上一點(diǎn),以為斜邊作等腰,連接,在外側(cè),以為斜邊作等腰,連接

1)如圖1,當(dāng)時(shí):

①求證:;

②判斷線段的數(shù)量關(guān)系,并證明;

2)如圖2,當(dāng)時(shí),的數(shù)量關(guān)系是否保持不變?

對于以上問題,小牧同學(xué)通過觀察、實(shí)驗(yàn),形成了解決該問題的幾種思路:

想法1:嘗試將點(diǎn)D為旋轉(zhuǎn)中心,過點(diǎn)D作線段垂線,交延長線于點(diǎn)G,連接;通過證明解決以上問題;

想法2:嘗試將點(diǎn)D為旋轉(zhuǎn)中心,過點(diǎn)D作線段垂線,垂足為點(diǎn)G,連接.通過證明解決以上問題;

想法3:嘗試?yán)盟狞c(diǎn)共圓,過點(diǎn)D垂線段,連接,通過證明D、FB、E四點(diǎn)共圓,利用圓的相關(guān)知識解決以上問題.

請你參考上面的想法,證明(一種方法即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小騰的爸爸計(jì)劃將一筆資金用于不超過10天的短期投資,針對這筆資金,銀行專屬客戶經(jīng)理提供了三種投資方案,這三種方案的回報(bào)如下:

方案一:每一天回報(bào)30元;

方案二:第一天回報(bào)8元,以后每一天比前一天多回報(bào)8元;

方案三:第一天回報(bào)0.5元,以后每一天的回報(bào)是前一天的2倍.

下面是小騰幫助爸爸選擇方案的探究過程,請補(bǔ)充完整:

1)確定不同天數(shù)所得回報(bào)金額(不足一天按一天計(jì)算),如下表:

天數(shù)

1

2

3

4

5

6

7

8

9

10

方案一

30

30

30

30

30

30

30

30

30

30

方案二

8

16

24

32

40

48

56

64

72

80

方案三

0.5

1

2

4

8

16

32

64

128

其中________;

2)計(jì)算累計(jì)回報(bào)金額,設(shè)投資天數(shù)為(單位:天),所得累計(jì)回報(bào)金額是(單位:元),于是得到三種方案的累計(jì)回報(bào)金額,與投資天數(shù)的幾組對應(yīng)值:

1

2

3

4

5

6

7

8

9

10

30

60

90

120

150

180

210

240

270

300

8

24

48

80

120

168

224

288

360

440

0.5

1.5

3.5

7.5

15.5

31.5

63.5

127.5

255.5

其中________

3)在同一平面直角坐標(biāo)系中,描出補(bǔ)全后的表中各組數(shù)值所對應(yīng)的點(diǎn),,,并畫出,的圖象;

注:為了便于分析,用虛線連接離散的點(diǎn).

4)結(jié)合圖象,小騰給出了依據(jù)不同的天數(shù)而選擇對應(yīng)方案的建議:

_________________________________________________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售10臺(tái)A型和20臺(tái)B型加濕器的利潤為2500元,銷售20臺(tái)A型和10臺(tái)B型加濕器的利潤為2000

(1)求每臺(tái)A型加濕器和B型加濕器的銷售利潤;

(2)該商店計(jì)劃一次購進(jìn)兩種型號的加濕器共100臺(tái),其中B型加濕器的進(jìn)貨量不超過A型加濕器的2倍,設(shè)購進(jìn)A型加濕器x臺(tái).這100臺(tái)加濕器的銷售總利潤為y

①求y關(guān)于x的函數(shù)關(guān)系式;

②該商店應(yīng)怎樣進(jìn)貨才能使銷售總利潤最大?

(3)實(shí)際進(jìn)貨時(shí),廠家對A型加濕器出廠價(jià)下調(diào)m(0<m<100)元,且限定商店最多購進(jìn)A型加濕器70臺(tái),若商店保持兩種加濕器的售價(jià)不變,請你根據(jù)以上信息及(2)中條件,設(shè)計(jì)出使這100臺(tái)加濕器銷售總利潤最大的進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市教育行政部門為了解初中學(xué)生參加綜合實(shí)踐活動(dòng)的情況,隨機(jī)抽取了本市初一、初二、初三年級各名學(xué)生進(jìn)行了調(diào)查,調(diào)查結(jié)果如圖所示,請你根據(jù)圖中的信息回答問題.

1)在被調(diào)查的學(xué)生中,參加綜合實(shí)踐活動(dòng)的有多少人,參加科技活動(dòng)的有多少人;

2)如果本市有萬名初中學(xué)生,請你估計(jì)參加科技活動(dòng)的學(xué)生約有多少名.

查看答案和解析>>

同步練習(xí)冊答案