(2013•鞍山二模)在一場足球比賽中,一球員從球門正前方10米處起腳射門,當(dāng)球飛行的水平距離為6米時達(dá)到最高點(diǎn),此時球高為3米.
(1)如圖建立直角坐標(biāo)系,當(dāng)球飛行的路線為一拋物線時,求此拋物線的解析式.
(2)已知球門高為2.44米,問此球能否射中球門(不計其它情況).
分析:(1)根據(jù)條件可以得到拋物線的頂點(diǎn)坐標(biāo)是(4,3),利用待定系數(shù)法即可求得函數(shù)的解析式;
(2)求出當(dāng)x=0時,拋物線的函數(shù)值,與2.44米進(jìn)行比較即可判斷.
解答:解:(1)拋物線的頂點(diǎn)坐標(biāo)是(4,3),
設(shè)拋物線的解析式是:y=a(x-4)2+3,
把(10,0)代入得36a+3=0,
解得a=-
1
12
,
則拋物線是y=-
1
12
(x-4)2+3;

(2)當(dāng)x=0時,y=-
1
12
×16+3=3-
4
3
=
5
3
<2.44米.
故能射中球門.
點(diǎn)評:本題考查了待定系數(shù)法求二次函數(shù)的解析式,以及二次函數(shù)的應(yīng)用,正確求得解析式是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鞍山二模)把拋物線y=x2+bx+c的圖象向右平移3個單位,再向下平移2個單位,所得圖象的解析式為y=x2-3x+5,則b-c的值為
-4
-4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鞍山二模)拋物線y=x2-2x+1的頂點(diǎn)坐標(biāo)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鞍山二模)如圖,∠AOP=∠BOP,CP∥OB,CP=4,則OC=(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鞍山二模)已知拋物線y=ax2+bx+3(a≠0)經(jīng)過A(3,0),B(4,1)兩點(diǎn),與x軸另一交點(diǎn)為D,與y軸交于點(diǎn)C.
(1)求拋物線y=ax2+bx+3(a≠0)的函數(shù)關(guān)系式;
(2)如圖,連接AC,在拋物線上是否存在點(diǎn)P,使∠ACD+∠ACP=45°?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)連接AC,E為線段AC上任意一點(diǎn)(不與A、C重合)經(jīng)過A、E、O三點(diǎn)的圓交直線AB于點(diǎn)F,
①點(diǎn)E在運(yùn)動過程中四邊形OEAF的面積是否發(fā)生變化,并說明理由;
②當(dāng)EF分四邊形OEAF的面積為1:2兩部分時,求點(diǎn)E的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案