【題目】問(wèn)題的提出:

如果點(diǎn)是銳角內(nèi)一動(dòng)點(diǎn),如何確定一個(gè)位置,使點(diǎn)到△ABC的三頂點(diǎn)的距離之和的值為最?

1)問(wèn)題的轉(zhuǎn)化:

繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,連接,這樣就把確定的最小值的問(wèn)題轉(zhuǎn)化成確定的最小值的問(wèn)題了,請(qǐng)你利用圖1證明:

2)問(wèn)題的解決:

當(dāng)點(diǎn)到銳角的三頂點(diǎn)的距離之和的值為最小時(shí),求的度數(shù).

問(wèn)題的延伸:

3)如圖2所示,在鈍角中,,,,點(diǎn)是這個(gè)三角形內(nèi)一動(dòng)點(diǎn),請(qǐng)你利用以上方法,求點(diǎn)到這個(gè)三角形各頂點(diǎn)的距離之和的最小值.

【答案】1)證明見(jiàn)解析;(2)∠AMB=120°;(3

【解析】

1)證明AMM'是等邊三角形,求出MM'=MA,結(jié)合MC=M'C'可得結(jié)論;

2)當(dāng)B、M、M'、C'在同一直線上時(shí),MA+MB+MC的值為最小,此時(shí)∠AMM'=60°,故可得∠AMB=120°;

3)根據(jù)題意作出輔助線,利用旋轉(zhuǎn)的性質(zhì)求出,求得的長(zhǎng),然后在中,利用勾股定理求出的長(zhǎng)即可.

1)如圖1,由旋轉(zhuǎn)的性質(zhì)得:∠MAM'=60°,MA=M'A

∴△AMM'是等邊三角形,

MM'=MA

MC=M'C',

MA+MB+MC=BM+MM′+M′C′;

2)如圖2,把AMC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60度得到AM′C′,連接MM′,由問(wèn)題的轉(zhuǎn)化可知:當(dāng)B、M、M'C'在同一直線上時(shí),MA+MB+MC的值為最小,

由(1)可知AMM'是等邊三角形,則∠AMM'=60°

∴∠AMB=120°;

3)如圖3,把AMC繞點(diǎn)A旋轉(zhuǎn)60度得到AM′C′,且B、M、M'、C'在同一直線上,過(guò)點(diǎn)延長(zhǎng)線的垂線,垂足為,

由旋轉(zhuǎn)可得,則,

,

,

,

,則,

∴在中,

,

∵點(diǎn)BM、M'、C'在同一直線上,

∴在中,,

即點(diǎn)到這個(gè)三角形各頂點(diǎn)的距離之和的最小值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面的文字,解答問(wèn)題.

大家知道是無(wú)理數(shù),而無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能完全地寫(xiě)出來(lái),于是小明用1來(lái)表示的小數(shù)部分,你同意小明的表示方法嗎?事實(shí)上,小明的表示方法是有道理的,因?yàn)?/span>的整數(shù)部分是1,用這個(gè)數(shù)減去其整數(shù)部分,差就是小數(shù)部分.

請(qǐng)解答下列問(wèn)題:

(1)求出+2的整數(shù)部分和小數(shù)部分;

(2)已知:10+=x+y,其中x是整數(shù),且0y1,請(qǐng)你求出(xy)的相反數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,CD//AB,BD平分ABC,CE平分DCFACE=90°

(1)請(qǐng)問(wèn)BDCE是否平行?請(qǐng)你說(shuō)明理由;

(2)ACBD有何位置關(guān)系?請(qǐng)你說(shuō)明判斷的理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線與雙曲線相交于A2,1)、B兩點(diǎn).

1)求mk的值;

2)不解關(guān)于xy的方程組直接寫(xiě)出點(diǎn)B的坐標(biāo);

3)直線經(jīng)過(guò)點(diǎn)B嗎?請(qǐng)說(shuō)明理由.

【答案】1m=1,k=2;(2)(-1,-2);(3)經(jīng)過(guò)

【解析】試題分析:(1)把A21)分別代入直線與雙曲線即可求得結(jié)果;

2)根據(jù)函數(shù)圖象的特征寫(xiě)出兩個(gè)圖象的交點(diǎn)坐標(biāo)即可;

3)把x=1,m=1代入即可求得y的值,從而作出判斷.

1)把A2,1)分別代入直線與雙曲線的解析式得m=1,k=2

2)由題意得B的坐標(biāo)(-1,-2);

3)當(dāng)x=1m=1代入y=2×(1)+4×(1)=24=2

所以直線經(jīng)過(guò)點(diǎn)B(1,-2).

考點(diǎn):反比例函數(shù)的性質(zhì)

點(diǎn)評(píng):反比例函數(shù)的性質(zhì)是初中數(shù)學(xué)的重點(diǎn),是中考常見(jiàn)題,一般難度不大,需熟練掌握.

型】解答
結(jié)束】
20

【題目】某氣球內(nèi)充滿了一定質(zhì)量的氣球,當(dāng)溫度不變時(shí),氣球內(nèi)氣球的壓力p(千帕)是氣球的體積V(2)的反比例函數(shù),其圖象如圖所示(千帕是一種壓強(qiáng)單位)

1)寫(xiě)出這個(gè)函數(shù)的解析式;

2)當(dāng)氣球的體積為0.8立方米時(shí),氣球內(nèi)的氣壓是多少千帕;

3)當(dāng)氣球內(nèi)的氣壓大于144千帕?xí)r,氣球?qū)⒈,為了安全起?jiàn),氣球的體積應(yīng)不小于多少立方米。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的半徑為2,點(diǎn)A、C在⊙O上,線段BD經(jīng)過(guò)圓心O,∠ABD=∠CDB=90°,AB=1,CD= ,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)(3,2),那么下列各點(diǎn)中在此函數(shù)圖象上的點(diǎn)是(

A.-,3B.9,C.-,2D.6,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)為(2,9),與y軸交于點(diǎn)A(0,5),與x軸交于點(diǎn)E,B.

(1)求二次函數(shù)y=ax2+bx+c的解析式;
(2)過(guò)點(diǎn)A作AC平行于x軸,交拋物線于點(diǎn)C,點(diǎn)P為拋物線上的一點(diǎn)(點(diǎn)P在AC上方),作PD平行于y軸交AB于點(diǎn)D,問(wèn)當(dāng)點(diǎn)P在何位置時(shí),四邊形APCD的面積最大?并求出最大面積;
(3)若點(diǎn)M在拋物線上,點(diǎn)N在其對(duì)稱(chēng)軸上,使得以A,E,N,M為頂點(diǎn)的四邊形是平行四邊形,且AE為其一邊,求點(diǎn)M,N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定關(guān)于 的二次函數(shù) ,
學(xué)生甲:當(dāng) 時(shí),拋物線與 軸只有一個(gè)交點(diǎn),因此當(dāng)拋物線與 軸只有一個(gè)交點(diǎn)時(shí), 的值為3;
學(xué)生乙:如果拋物線在 軸上方,那么該拋物線的最低點(diǎn)一定在第二象限;
請(qǐng)判斷學(xué)生甲、乙的觀點(diǎn)是否正確,并說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某游樂(lè)場(chǎng)部分平面圖如圖所示,C、E、A在同一直線上,D、E、B在同一直線上,測(cè)得A處與E處的距離為80 米,C處與D處的距離為34米,∠C=90°,∠ABE=90°,∠BAE=30°.( ≈1.4, ≈1.7)

(1)求旋轉(zhuǎn)木馬E處到出口B處的距離;
(2)求海洋球D處到出口B處的距離(結(jié)果保留整數(shù)).

查看答案和解析>>

同步練習(xí)冊(cè)答案