【題目】如圖所示,已知拋物線與一次函數(shù)的圖象相交于,兩點,點是拋物線上不與,重合的一個動點.
(1)請求出,,的值;
(2)當點在直線上方時,過點作軸的平行線交直線于點,設點的橫坐標為,的長度為,求出關于的解析式;
(3)在(2)的基礎上,設面積為,求出關于的解析式,并求出當取何值時,取最大值,最大值是多少?
【答案】(1),,;(2);(3)當時,取最大值,最大值為
【解析】
(1)把A、B坐標分別代入拋物線和一次函數(shù)解析式即可求出a、b、k的值;(2)根據(jù)a、b、k的值可得拋物線和直線AB的解析式,根據(jù)P點橫坐標為m可用m表示P、C兩點坐標,根據(jù)兩點間距離公式即可得L與m的關系式;(3)如圖,作AD⊥PC于D,BE⊥PC于E,根據(jù),可用m表示出S,配方求出二次函數(shù)的最值即可得答案.
(1)∵點A(-1,-1)在拋物線圖象上,
∴,
解得:,
∵點A(-1,-1)、B(2,-4)在一次函數(shù)的圖象上,
∴,
解得,
∴,,
(2)∵,,a=-1,
∴直線的解析式為,拋物線的解析式為,
∵點P在拋物線上,點C在直線AB上,點P橫坐標為m,PC//y軸,
∴,,
∴關于的解析式:,
(3)如圖,作AD⊥PC于D,BE⊥PC于E,
∴AD=m+1,BE=2-m,
∵,
∴PC·AD+PC·BE
配方得:,
∴當時,取最大值,最大值為
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù),函數(shù)與自變量的部分對應值如下表:
… | —4 | —3 | —2 | —1 | 0 | … | |
… | 3 | —2 | —5 | —6 | —5 | … |
則下列判斷中正確的是( )
A. 拋物線開口向下 B. 拋物線與軸交于正半軸
C. 方程的正根在1與2之間 D. 當時的函數(shù)值比時的函數(shù)值大
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx(a>0)經(jīng)過原點O和點A(2,0),B(﹣1,2)三點.
(1)寫出拋物線的對稱軸和頂點坐標;
(2)點(x1,y1),(x2,y2)在拋物線上,若x1<x2<1,比較y1,y2的大小,并說明理由;
(3)點C與點B關于拋物線的對稱軸對稱,求直線AC的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,拋物線y=ax2+bx+c(a>0)與x軸的正半軸交于A,C兩點(點A在點C右側),與y軸正半軸交于點B,連結BC,將△BOC沿直線BC翻折,若點O恰好落在線段AB上,則稱該拋物線為”折點拋物線”,下列拋物線是“折點拋物線”的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=18,AD=12,點M是邊AB的中點,連結DM,DM與AC交于點G,點E,F分別是CD與DG上的點,連結EF,
(1)求證:CG=2AG.
(2)若DE=6,當以E,F,D為頂點的三角形與△CDG相似時,求EF的長.
(3)若點E從點D出發(fā),以每秒2個單位的速度向點C運動,點F從點G出發(fā),以每秒1個單位的速度向點D運動.當一個點到達,另一個隨即停止運動.在整個運動過程中,求四邊形CEFG的面積的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某新型高科技商品,每件的售價比進價多6元,5件的進價相當于4件的售價,每天可售出200件,經(jīng)市場調查發(fā)現(xiàn),如果每件商品漲價1元,每天就會少賣5件.
(1)該商品的售價和進價分別是多少元?
(2)設每天的銷售利潤為w元,每件商品漲價x元,則當售價為多少元時,該商品每天的銷售利潤最大,最大利潤為多少元?
(3)為增加銷售利潤,營銷部推出了以下兩種銷售方案:方案一:每件商品漲價不超過8元;方案二:每件商品的利潤至少為24元,請比較哪種方案的銷售利潤更高,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=x與雙曲線y=交于A、B兩點,且點A的橫坐標為.
(1)求k的值;
(2)若雙曲線y=上點C的縱坐標為3,求△AOC的面積;
(3)在坐標軸上有一點M,在直線AB上有一點P,在雙曲線y=上有一點N,若以O、M、P、N為頂點的四邊形是有一組對角為60°的菱形,請寫出所有滿足條件的點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知拋物線與x軸交于A(-1,0),B(3,0)兩點,與y軸交于點C.
(1)求該拋物線的解析式;
(2)如圖①,若點D是拋物線上一動點,設點D的橫坐標為m(0<m<3),連接CD,BD,BC,AC,當△BCD的面積等于△AOC面積的2倍時,求m的值;
(3)若點N為拋物線對稱軸上一點,請在圖②中探究拋物線上是否存在點M,使得以B,C,M,N為頂點的四邊形是平行四邊形?若存在,請直接寫出所有滿足條件的點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2017湖北省鄂州市)小明想要測量學校食堂和食堂正前方一棵樹的高度,他從食堂樓底M處出發(fā),向前走3米到達A處,測得樹頂端E的仰角為30°,他又繼續(xù)走下臺階到達C處,測得樹的頂端E的仰角是60°,再繼續(xù)向前走到大樹底D處,測得食堂樓頂N的仰角為45°.已知A點離地面的高度AB=2米,∠BCA=30°,且B、C、D三點在同一直線上.
(1)求樹DE的高度;
(2)求食堂MN的高度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com