【題目】如圖,在矩形ABCD中,AB=18AD=12,點(diǎn)M是邊AB的中點(diǎn),連結(jié)DM,DMAC交于點(diǎn)G,點(diǎn)E,F分別是CDDG上的點(diǎn),連結(jié)EF,

(1)求證:CG=2AG.

(2)DE=6,當(dāng)以E,F,D為頂點(diǎn)的三角形與CDG相似時(shí),求EF的長(zhǎng).

(3)若點(diǎn)E從點(diǎn)D出發(fā),以每秒2個(gè)單位的速度向點(diǎn)C運(yùn)動(dòng),點(diǎn)F從點(diǎn)G出發(fā),以每秒1個(gè)單位的速度向點(diǎn)D運(yùn)動(dòng).當(dāng)一個(gè)點(diǎn)到達(dá),另一個(gè)隨即停止運(yùn)動(dòng).在整個(gè)運(yùn)動(dòng)過(guò)程中,求四邊形CEFG的面積的最小值.

【答案】(1)證明見(jiàn)解析;(2) EF=;(3)S四邊形CEFG最小=52.

【解析】

(1)利用矩形的性質(zhì)及平行線的性質(zhì),可證得∠DCG=∠MAG,,∠CDG=∠AMG△AGM∽△CGD,再利用相似三角形的對(duì)應(yīng)邊相等,可得比例線段,然后證明DC=AB=2AM,即可證得CGAG的數(shù)量關(guān)系.

(2)利用勾股定理,分別求出AC、DG的長(zhǎng),再分情況討論:當(dāng)∠DEF=∠DCG時(shí),△DEF∽△DCG;當(dāng)∠DEF=∠DGC時(shí),△DEF∽△DGC,分別利用相似三角形的性質(zhì),得出對(duì)應(yīng)邊成比例,即可求出EF的長(zhǎng).

(3)GH⊥DC,FN⊥DC,易證△DNF∽△MAD,可證對(duì)應(yīng)邊成比例,求出NF的長(zhǎng),再根據(jù)S四邊形CEFG=SDCG-SDEF,可得到St的函數(shù)解析式,再利用二次函數(shù)的性質(zhì),可求出四邊形CEFG的面積的最小值.

證明:(1)在矩形ABCD中,AB∥DC,

∴∠DCG=∠MAG,∠CDG=∠AMG,

∴△AGM∽△CGD,

點(diǎn)M是邊AB的中點(diǎn),

∴DC=AB=2AM,

=2,CGCG=2AG

(2)Rt△ADC,由勾股定理得AC=,

(1)CG=2AGCG=AC=4,同理可得DG=10

當(dāng)∠DEF=∠DCG時(shí),△DEF∽△DCG

,解得EF=

當(dāng)∠DEF=∠DGC時(shí),△DEF∽△DGC

, ,解得EF=

(3)GH⊥DC,FN⊥DC,

設(shè)運(yùn)動(dòng)時(shí)間為t,則DF=DG-FG=10-t,DE=2t

∵∠DNF=∠DAM,∠NDF=∠AMD,

∴△DNF∽△MAD

,解得NF=

∵S四邊形CEFG=SDCG-SDEF

當(dāng)t=5時(shí),S四邊形CEFG最小=52

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某藥品研究所開(kāi)發(fā)一種抗菌新藥,經(jīng)多年動(dòng)物實(shí)驗(yàn),首次用于臨床人體試驗(yàn),測(cè)得成人服藥后血液中藥物濃度y(微克/毫升)與服藥時(shí)間x小時(shí)之間函數(shù)關(guān)系如圖所示(當(dāng)4≤x≤10時(shí),yx成反比例).

1)根據(jù)圖象分別求出血液中藥物濃度上升和下降階段yx之間的函數(shù)關(guān)系式.

2)問(wèn)血液中藥物濃度不低于2微克/毫升的持續(xù)時(shí)間多少小時(shí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1是實(shí)驗(yàn)室中的一種擺動(dòng)裝置,BC在地面上,支架ABC是底邊為BC的等腰直角三角形,擺動(dòng)臂AD可繞點(diǎn)A旋轉(zhuǎn),擺動(dòng)臂DM可繞點(diǎn)D旋轉(zhuǎn),AD30DM10

1)在旋轉(zhuǎn)過(guò)程中,

①當(dāng)AD,M三點(diǎn)在同一直線上時(shí),求AM的長(zhǎng).

②當(dāng)A,DM三點(diǎn)為同一直角三角形的頂點(diǎn)時(shí),求AM的長(zhǎng).

2)若擺動(dòng)臂AD順時(shí)針旋轉(zhuǎn)90°,點(diǎn)D的位置由ABC外的點(diǎn)D1轉(zhuǎn)到其內(nèi)的點(diǎn)D2處,連結(jié)D1D2,如圖2,此時(shí)∠AD2C135°,CD260,求BD2的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ABAC,點(diǎn)DBC上,BDDC,過(guò)點(diǎn)DDEAC,垂足為E,⊙O經(jīng)過(guò)AB,D三點(diǎn)且與AC的另一個(gè)交點(diǎn)為F

1)求證:DE是⊙O的切線;

2AB12,∠BAC60°,求線段DE,EF所圍成的陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,已知AC=3,BC=4,點(diǎn)MAB邊上的一個(gè)動(dòng)點(diǎn),∠DME的兩邊與折線A—C—B分別交于點(diǎn)D和點(diǎn)E(點(diǎn)E在點(diǎn)D的右邊),且∠DME=A,若能使以點(diǎn)DE,M為頂點(diǎn)的三角形與ABC相似的點(diǎn)D有三個(gè),則AM的長(zhǎng)度x的取值范圍是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知拋物線與一次函數(shù)的圖象相交于兩點(diǎn),點(diǎn)是拋物線上不與重合的一個(gè)動(dòng)點(diǎn).

1)請(qǐng)求出,,的值;

2)當(dāng)點(diǎn)在直線上方時(shí),過(guò)點(diǎn)軸的平行線交直線于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為,的長(zhǎng)度為,求出關(guān)于的解析式;

3)在(2)的基礎(chǔ)上,設(shè)面積為,求出關(guān)于的解析式,并求出當(dāng)取何值時(shí),取最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線x軸,y軸分別交于點(diǎn)A,點(diǎn)B,拋物線經(jīng)過(guò)A,B與點(diǎn).

1)求拋物線的解析式;

2)點(diǎn)P是直線AB上方的拋物線上一動(dòng)點(diǎn)(不與點(diǎn)A,B重合),過(guò)點(diǎn)Px軸的垂線,垂足為D,交線段AB于點(diǎn)E.設(shè)點(diǎn)P的橫坐標(biāo)為m.

①求的面積y關(guān)于m的函數(shù)關(guān)系式,當(dāng)m為何值時(shí),y有最大值,最大值是多少?

②若點(diǎn)E是垂線段PD的三等分點(diǎn),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)到的位置,點(diǎn)分別落在點(diǎn)、處,點(diǎn)軸上,再將繞點(diǎn)順時(shí)針旋轉(zhuǎn)到的位置,點(diǎn)軸上,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)到的位置,點(diǎn)軸上,依次進(jìn)行下去……,若點(diǎn),.則點(diǎn)的坐標(biāo)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)EAB邊上,沿CE折疊矩形ABCD,使點(diǎn)B落在AD邊上的點(diǎn)F處,若,則的值為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案