【題目】如圖,矩形ABCD中,AD=20,AB=32,點E為DC上一個動點,把△ADE沿AE折疊,當點D的對應點F落在矩形ABCD的對稱軸上時,則DE的長為_____
【答案】10或.
【解析】
過點F作MN⊥AB于點N,MN交CD于點M,如圖,由矩形有兩條對稱軸可知要分兩種情況考慮,根據(jù)折疊的特性可找出各邊的關系,然后在Rt△AFN與Rt△EMF中,利用勾股定理得出關于DE長度的方程,解方程即可得出結果.
解:過點F作MN⊥AB于點N,MN交CD于點M,如圖所示.
設DE=a,則EF=a.
∵矩形有兩條對稱軸,∴分兩種情況考慮:
①當DM=CM時,AN=DM=CD=AB=16,AD=AF=20,
在Rt△AFN中,由勾股定理可知:NF==12,
∴MF=MN﹣NF=AD﹣NF=8,EM=DM﹣DE=16﹣a,
∵EF2=EM2+MF2,即a2=(16﹣a)2+64,
解得:a=10;
②當MF=NF時,MF=NF=MN=AD=10,
在Rt△AFN中,由勾股定理可知:AN==10,
∴EM=DM﹣DE=AN﹣DE=10﹣a,
∵EF2=EM2+MF2,即a2=(10﹣a)2+102,
解得:a=.
綜上知:DE=10或.
故答案為:10或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的直徑AB=12,AM,BN是⊙O的兩條切線,DC切⊙O于E,交BN于C,設AD=x,BC=y.
(1)求y與x的函數(shù)關系式;
(2)若x,y是2t2-30t+m=0的兩實根,求x,y的值;
(3)求△OCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先閱讀理解下面的例題,再按要求解答下列問題:
例題:求代數(shù)式y2+4y+8的最小值.
解:y2+4y+8=y2+4y+4+4=(y+2)2+4
∵(y+2)2≥0
∴(y+2)2+4≥4
∴y2+4y+8的最小值是4.
(1)求代數(shù)式m2+m+4的最小值;
(2)求代數(shù)式4﹣x2+2x的最大值;
(3)某居民小區(qū)要在一塊一邊靠墻(墻長15m)的空地上建一個長方形花園ABCD,花園一邊靠墻,另三邊用總長為20m的柵欄圍成.如圖,設AB=x(m),請問:當x取何值時,花園的面積最大?最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點A(﹣3,m+8),B(n,﹣6)兩點.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正方形ABCD的對角線AC,BD相交于點O.
(1)如圖1,E,G分別是OB,OC上的點,CE與DG的延長線相交于點F.若DF⊥CE,求證:OE=OG;
(2)如圖2,H是BC上的點,過點H作EH⊥BC,交線段OB于點E,連結DH交CE于點F,交OC于點G.若OE=OG,
①求證:∠ODG=∠OCE;
②當AB=1時,求HC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以邊為直徑的⊙經過點,是⊙上一點,連結交于點,且,.
(1)試判斷與⊙的位置關系,并說明理由;
(2)若點是弧的中點,已知,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣2x2+8x﹣6與x軸交于點A、B,把拋物線在x軸及其上方的部分記作C1,將C1向右平移得C2,C2與x軸交于點B,D.若直線y=x+m與C1、C2共有3個不同的交點,則m的取值范圍是( )
A. ﹣2<m< B. ﹣3<m<﹣ C. ﹣3<m<﹣2 D. ﹣3<m<﹣
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,三孔橋橫截面的三個孔都呈拋物線形,左右兩個拋物線形是全等的.正常水位時,大孔水面寬度為,頂點距水面,小孔頂點距水面.當水位上漲剛好淹沒小孔時,大孔的水面寬度為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在銳角△ABC中,小明進行了如下的尺規(guī)作圖:
①分別以點A、B為圓心,以大于AB的長為半徑作弧,兩弧分別相交于點P、Q;
②作直線PQ分別交邊AB、BC于點E、D.
(1)小明所求作的直線DE是線段AB的 ;
(2)聯(lián)結AD,AD=7,sin∠DAC=,BC=9,求AC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com