【題目】如圖,一次函數(shù)ykx+b的圖象與反比例函數(shù)y的圖象交于點(diǎn)A(﹣3,m+8),Bn,﹣6)兩點(diǎn).

1)求一次函數(shù)與反比例函數(shù)的解析式;

2)求AOB的面積.

【答案】(1) y=﹣,y=﹣2x﹣4;(2)見解析.

【解析】

1)將點(diǎn)A坐標(biāo)代入反比例函數(shù)求出m的值,從而得到點(diǎn)A的坐標(biāo)以及反比例函數(shù)解析式,再將點(diǎn)B坐標(biāo)代入反比例函數(shù)求出n的值,從而得到點(diǎn)B的坐標(biāo),然后利用待定系數(shù)法求一次函數(shù)解析式求解;

2)設(shè)ABx軸相交于點(diǎn)C,根據(jù)一次函數(shù)解析式求出點(diǎn)C的坐標(biāo),從而得到點(diǎn)OC的長度,再根據(jù)SAOB=SAOC+SBOC列式計算即可得解.

解:(1)將A(﹣3,m+8)代入反比例函數(shù)y得,

m+8,

解得m=﹣6,

m+8=﹣6+82,

所以,點(diǎn)A的坐標(biāo)為(﹣3,2),

反比例函數(shù)解析式為y=﹣,

將點(diǎn)Bn,﹣6)代入y=﹣得,﹣=﹣6,

解得n1

所以,點(diǎn)B的坐標(biāo)為(1,﹣6,

將點(diǎn)A(﹣3,2),B1,﹣6)代入ykx+b得,

,

解得,

所以,一次函數(shù)解析式為y=﹣2x4

2)設(shè)ABx軸相交于點(diǎn)C,

令﹣2x40解得x=﹣2

所以,點(diǎn)C的坐標(biāo)為(﹣2,0),

所以,OC2,

SAOBSAOC+SBOC

×2×2+×2×6,

2+6

8

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,過點(diǎn)BBE⊥CD,垂足為E,連接AE,FAE上的一點(diǎn),且∠BFE ∠C

1)求證:△ABF∽△EAD;

2)若AB4,∠BAE30°,求AE的長;

3)在(1)、(2)的條件下,若AD3,求BF的長(計算結(jié)果可含根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已 知直線交坐標(biāo)軸于兩點(diǎn),以線段為邊向上作正方形,過點(diǎn)的拋物線與直線另一個交點(diǎn)為

1)請直接寫出點(diǎn)的坐標(biāo);

2)求拋物線的解析式;

3)若正方形以每秒個單位長度的速度沿射線下滑,直至頂點(diǎn)落在x軸上時停止.設(shè)正方形落在軸下方部分的面積為,求關(guān)于滑行時間的函數(shù)關(guān)系式,并寫出相應(yīng)自變量的取值范圍;

4)在(3)的條件下,拋物線與正方形一起平移,同時停止,求拋物線上兩點(diǎn)間的拋物線弧所掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程:x2﹣(m﹣3)x﹣m=0

(1)證明原方程有兩個不相等的實數(shù)根;

(2)若拋物線y=x2﹣(m﹣3)x﹣m與x軸交于A(x1,0),B(x2,0)兩點(diǎn),則A,B兩點(diǎn)間的距離是否存在最大或最小值?若存在,求出這個值;若不存在,請說明理由.(友情提示:AB=|x1﹣x2|)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA5,OC3.若把矩形OABC繞著點(diǎn)O逆時針旋轉(zhuǎn),使點(diǎn)A恰好落在BC邊上的A1處,則點(diǎn)C的對應(yīng)點(diǎn)C1的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b與反比例函數(shù)y=(m≠0)的圖象交于點(diǎn)A(3,1),且過點(diǎn)B(0,﹣2).

(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;

(2)如果點(diǎn)P是x軸上一點(diǎn),且△ABP的面積是3,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AD20,AB32,點(diǎn)EDC上一個動點(diǎn),把△ADE沿AE折疊,當(dāng)點(diǎn)D的對應(yīng)點(diǎn)F落在矩形ABCD的對稱軸上時,則DE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD繞點(diǎn)A順時針旋轉(zhuǎn),得到矩形AB′C′D′,點(diǎn) C的對應(yīng)點(diǎn) C′恰好落在CB的延長線上,邊AB交邊 C′D′于點(diǎn)E.

(1)求證:BC=BC′;

(2) AB=2,BC=1,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為4,以點(diǎn)A為圓心,2為半徑作圓,E是⊙A上的任意一點(diǎn),將點(diǎn)E繞點(diǎn)D按逆時針方向轉(zhuǎn)轉(zhuǎn)90°得到點(diǎn)F,則線段AF的長的最小值____

查看答案和解析>>

同步練習(xí)冊答案