【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象交坐標(biāo)軸于A(﹣1,0),B(4,0),C(0,﹣4)三點(diǎn),點(diǎn)P是直線BC下方拋物線上一動(dòng)點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)是否存在點(diǎn)P,使△POC是以O(shè)C為底邊的等腰三角形?若存在,求出P點(diǎn)坐標(biāo);若不存在,請說明理由;
(3)動(dòng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PBC面積最大,求出此時(shí)P點(diǎn)坐標(biāo)和△PBC的最大面積.
【答案】
(1)
解:設(shè)拋物線解析式為y=ax2+bx+c,
把A、B、C三點(diǎn)坐標(biāo)代入可得 ,解得 ,
∴拋物線解析式為y=x2﹣3x﹣4;
(2)
解:作OC的垂直平分線DP,交OC于點(diǎn)D,交BC下方拋物線于點(diǎn)P,如圖1,
∴PO=PD,此時(shí)P點(diǎn)即為滿足條件的點(diǎn),
∵C(0,﹣4),
∴D(0,﹣2),
∴P點(diǎn)縱坐標(biāo)為﹣2,
代入拋物線解析式可得x2﹣3x﹣4=﹣2,解得x= (小于0,舍去)或x= ,
∴存在滿足條件的P點(diǎn),其坐標(biāo)為( ,﹣2);
(3)
解:∵點(diǎn)P在拋物線上,
∴可設(shè)P(t,t2﹣3t﹣4),
過P作PE⊥x軸于點(diǎn)E,交直線BC于點(diǎn)F,如圖2,
∵B(4,0),C(0,﹣4),
∴直線BC解析式為y=x﹣4,
∴F(t,t﹣4),
∴PF=(t﹣4)﹣(t2﹣3t﹣4)=﹣t2+4t,
∴S△PBC=S△PFC+S△PFB= PFOE+ PFBE= PF(OE+BE)= PFOB= (﹣t2+4t)×4=﹣2(t﹣2)2+8,
∴當(dāng)t=2時(shí),S△PBC最大值為8,此時(shí)t2﹣3t﹣4=﹣6,
∴當(dāng)P點(diǎn)坐標(biāo)為(2,﹣6)時(shí),△PBC的最大面積為8.
【解析】(1)由A、B、C三點(diǎn)的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)由題意可知點(diǎn)P在線段OC的垂直平分線上,則可求得P點(diǎn)縱坐標(biāo),代入拋物線解析式可求得P點(diǎn)坐標(biāo);(3)過P作PE⊥x軸,交x軸于點(diǎn)E,交直線BC于點(diǎn)F,用P點(diǎn)坐標(biāo)可表示出PF的長,則可表示出△PBC的面積,利用二次函數(shù)的性質(zhì)可求得△PBC面積的最大值及P點(diǎn)的坐標(biāo).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,直徑CD垂直于不過圓心O的弦AB,垂足為點(diǎn)N,連接AC,點(diǎn)E在AB上,且AE=CE
(1)求證:AC2=AEAB;
(2)過點(diǎn)B作⊙O的切線交EC的延長線于點(diǎn)P,試判斷PB與PE是否相等,并說明理由;
(3)設(shè)⊙O半徑為4,點(diǎn)N為OC中點(diǎn),點(diǎn)Q在⊙O上,求線段PQ的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣4=0
(1)當(dāng)m為何值時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根?
(2)若邊長為5的菱形的兩條對角線的長分別為方程兩根的2倍,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對一組數(shù)據(jù):﹣2,1,2,1,下列說法不正確的是( )
A.平均數(shù)是1
B.眾數(shù)是1
C.中位數(shù)是1
D.極差是4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,CB,CD分別切⊙O于點(diǎn)B,D,CD交BA的延長線于點(diǎn)E,CO的延長線交⊙O于點(diǎn)G,EF⊥OG于點(diǎn)F.
(1)求證:∠FEB=∠ECF;
(2)若BC=6,DE=4,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的不等式組 的解集中至少有5個(gè)整數(shù)解,則正數(shù)a的最小值是( )
A.3
B.2
C.1
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在面積都相等的所有矩形中,當(dāng)其中一個(gè)矩形的一邊長為1時(shí),它的另一邊長為3.
(1)設(shè)矩形的相鄰兩邊長分別為x,y.
①求y關(guān)于x的函數(shù)表達(dá)式;
②當(dāng)y≥3時(shí),求x的取值范圍;
(2)圓圓說其中有一個(gè)矩形的周長為6,方方說有一個(gè)矩形的周長為10,你認(rèn)為圓圓和方方的說法對嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小華和小軍做摸球游戲:A袋裝有編號(hào)為1,2,3的三個(gè)小球,B袋裝有編號(hào)為4,5,6的三個(gè)小球,兩袋中的所有小球除編號(hào)外都相同.從兩個(gè)袋子中分別隨機(jī)摸出一個(gè)小球,若B袋摸出小球的編號(hào)與A袋摸出小球的編號(hào)之差為偶數(shù),則小華勝,否則小軍勝,這個(gè)游戲?qū)﹄p方公平嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com