A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{9}$ |
分析 DE為△ABC的中位線,則DE∥BC,DE=$\frac{1}{2}$BC,再證明△ODE∽△OCB,由相似三角形的性質(zhì)即可得到結(jié)論.
解答 解:∵點(diǎn)D、E分別為AB、AC的中點(diǎn),
∴DE為△ABC的中位線,
∴DE∥BC,DE=$\frac{1}{2}$BC,
∴∠ODE=∠OCB,∠OED=∠OBC,
∴△ODE∽△OCB,
∴$\frac{{S}_{△DOE}}{{S}_{△BOC}}$=($\frac{DE}{BC}$)2=$\frac{1}{4}$,
故選C.
點(diǎn)評 本題考查了相似三角形的判定與性質(zhì),三角形中位線定理,熟練掌握相似三角形的性質(zhì)定理是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
x | … | -1 | 0 | 1 | 2 | 3 | … |
y | … | 0 | -3 | -4 | -3 | 0 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | ① | B. | ② | C. | ③ | D. | ④ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com