【題目】如圖,在平面直角坐標(biāo)系xOy中,有一個由六個邊長為1的正方形組成的圖案,其中點AB的坐標(biāo)分別為(3,5)(6,1).若過原點的直線l將這個圖案分成面積相等的兩部分,則直線l的函數(shù)解析式為_____

【答案】

【解析】

如圖,連接中間兩個小正方形構(gòu)成的矩形的對角線,則經(jīng)過對角線交點的直線把此矩形分成面積相等的兩部分,可知此直線也把整個圖形分成面積相等的兩部分,根據(jù)點AB的坐標(biāo)可得C的坐標(biāo),再根據(jù)待定系數(shù)法可求直線l的函數(shù)解析式.

解:∵點A,B的坐標(biāo)分別為(3,5),(6,1),

C的坐標(biāo)為(4,2.5),

則直線l經(jīng)過點C

設(shè)直線l的函數(shù)解析式為y=kx,依題意有

2.5=4k

解得k=

故直線l的函數(shù)解析式為y=x

故答案為:y=x

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙ORtABC的外接圓,∠BAC=90°,AD平分BAC,且交O于點D,過點DDEBCAB的延長線于點E,連接BDCD

(1)求證DEO的切線;

(2)AB=8,AC=6,BE的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(4,),B(1,n)是一次函數(shù)ykx+b與反比例函數(shù)ym≠0,m0)圖象的兩個交點,ACx軸于CBDy軸于D

1)求一次函數(shù)解析式及m的值;

2)根據(jù)圖象直接寫出在第二象限內(nèi),當(dāng)x取何值時,一次函數(shù)小于于反比例函數(shù)的值?

3P是線段AB上的一點,連接PC,PD,若PCAPDB面積相等,求點P坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個梯子AB斜靠在一豎直的墻AO上,測得AO=2 m.若梯子的頂端沿墻下滑0.5米,這時梯子的底端也恰好外移0.5米,則梯子的長度AB為(

A. 2.5 m B. 3 m C. 1.5 m D. 3.5 m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三個盒子中分別裝有除顏色外都相同的小球,甲盒中裝有兩個球,分別為一個紅球和一個綠球;乙盒中裝有三個球,分別為兩個綠球和一個紅球;丙盒中裝有兩個球,分別為一個紅球和一個綠球,從三個盒子中各隨機取出一個小球

(1)請畫樹狀圖,列舉所有可能出現(xiàn)的結(jié)果

(2)請直接寫出事件取出至少一個紅球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x與雙曲線y=x0)交于點A,將直線y=x向右平移3個單位后,與雙曲線y=x0)交于點B,與x軸交于點C,若=2,則k=( 。

A. B. 4 C. 6 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以△ABC的邊AB,AC為邊分別向外作正方形ABDE和正方形ACFG,連接EGMEG的中點,連接AM

1)如圖1,∠BAC=90°,試判斷AMBC關(guān)系?

2)如圖2,∠BAC≠90°,圖1中的結(jié)論是否成立?若不成立,說明理由;若成立,給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年3月國際風(fēng)箏節(jié)期間,王大伯決定銷售一批風(fēng)箏,經(jīng)市場調(diào)研:蝙蝠型風(fēng)箏進(jìn)價每個為10元,當(dāng)售價每個為12元時,銷售量為180個,若售價每提高1元,銷售量就會減少10個,請回答以下問題:

(1)用表達(dá)式表示蝙蝠型風(fēng)箏銷售量y(個)與售價x(元)之間的函數(shù)關(guān)系(12≤x≤30);

(2)王大伯為了讓利給顧客,并同時獲得840元利潤,售價應(yīng)定為多少?

(3)當(dāng)售價定為多少時,王大伯獲得利潤W最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段 AB4,M AB 的中點,動點 P 到點 M 的距離是 1,連接 PB,線段

PB 繞點 P 逆時針旋轉(zhuǎn) 90°得到線段 PC,連接 AC,則線段 AC 長度的最大值是_________

查看答案和解析>>

同步練習(xí)冊答案