【題目】如圖,已知在矩形ABCD中,AB=2,BC=3,P是線段AD上的一動點,連接PC,過點P作PE⊥PC交AB于點E.以CE為直徑作⊙O,當點P從點A移動到點D時,對應點O也隨之運動,則點O運動的路程長度為_____.
【答案】.
【解析】
連接AC,取AC的中點K,連接OK.設AP=x,AE=y,求出AE的最大值,求出OK的最大值,由題意點O的運動路徑的長為2OK,由此即可解決問題.
解:連接AC,取AC的中點K,連接OK.設AP=x,AE=y,
∵PE⊥CP
∴∠APE+∠CPD=90°,且∠AEP+∠APE=90°
∴∠AEP=∠CPD,且∠EAP=∠CDP=90°
∵△APE∽△DCP
∴,
即x(3﹣x)=2y,
∴y=x(3﹣x)=﹣x2+x=﹣GXdjs4436236(x﹣)2+,
∴當x=時,y的最大值為,
∴AE的最大值=,
∵AK=KC,EO=OC,
∴OK=AE=,
∴OK的最大值為,
由題意點O的運動路徑的長為2OK=,
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】下面是小明設計的“作等腰三角形外接圓”的尺規(guī)作圖過程.
已知:如圖1,在中,AB=AC.
求作:等腰的外接圓.
作法:
①如圖2,作的平分線交BC于D ;
②作線段AB的垂直平分線EF;
③EF與AD交于點O;
④以點O為圓心,以OB為半徑作圓.
所以,就是所求作的等腰的外接圓.
根據(jù)小明設計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補全圖形(保留痕跡);
(2)完成下面的證明.
AB=AC,,
_________________________.
AB的垂直平分線EF與AD交于點O,
OA=OB,OB=OC
(填寫理由:______________________________________)
OA=OB=OC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為落實立德樹人的根本任務,加強思改、歷史學科教師的專業(yè)化隊伍建設.某校計劃從前來應聘的思政專業(yè)(一名研究生,一名本科生)、歷史專業(yè)(一名研究生、一名本科生)的高校畢業(yè)生中選聘教師,在政治思想審核合格的條件下,假設每位畢業(yè)生被錄用的機會相等
(1)若從中只錄用一人,恰好選到思政專業(yè)畢業(yè)生的概率是 :
(2)若從中錄用兩人,請用列表或畫樹狀圖的方法,求恰好選到的是一名思政研究生和一名歷史本科生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,正方形ABCD的面積為20,頂點A在y軸上,頂點C在x軸上,頂點D在雙曲線的圖象上,邊CD交y軸于點E,若,則k的值為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】近日,國產(chǎn)航母山東艦成為了新晉網(wǎng)紅,作為我國本世紀建造的第一艘真正意義上的國產(chǎn)航母,承載了我們太多期盼,促使我國在偉大復興路上加速前行如圖,山東艦在一次測試中,巡航到海島A北偏東60°方向P處,發(fā)現(xiàn)在海島A正東方向有一可疑船只B正沿BA方向行駛。山東艦經(jīng)測量得出:可疑船只在P處南偏東45°方向,距P處海里。山東艦立即從P沿南偏西30°方向駛出,剛好在C處成功攔截可疑船只。求被攔截時,可疑船只距海島A還有多少海里?(,結果精確到0.1海里)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),某數(shù)學活動小組經(jīng)探究發(fā)現(xiàn):在⊙O中,直徑AB與弦CD相交于點P,此時PA· PB=PC·PD
(1)如圖(2),若AB與CD相交于圓外一點P, 上面的結論是否成立?請說明理由.
(2)如圖(3),將PD繞點P逆時針旋轉至與⊙O相切于點C, 直接寫出PA、PB、PC之間的數(shù)量關系.
(3)如圖(3),直接利用(2)的結論,求當 PC= ,PA=1時,陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,已知AB=AC,∠BAC=90°,E為邊AC上一點,連接BE.
(1)如圖1,若∠ABE=15°,O為BE中點,連接AO,且AO=1,求BC的長;
(2)如圖2,D為AB上一點,且滿足AE=AD,過點A作AF⊥BE交BC于點F,過點F作FG⊥CD交BE的延長線于點G,交AC于點M,求證:BG=AF+FG.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】動點A(m+2,3m+4)在直線l上,點B(b,0)在x軸上,如果以B為圓心,半徑為1的圓與直線l有交點,則b的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,四邊形ABCD中,E是對角線AC上一點,DE=EC,以AE為直徑的⊙O與邊CD相切于點D,點B在⊙O上,連接OB.
(1)求證:DE=OE;
(2)若CD∥AB,求證:BC是⊙O的切線;
(3)在(2)的條件下,求證:四邊形ABCD是菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com