【題目】如圖,在直角坐標系中有,為坐標原點,,將此三角形繞原點順時針旋轉,得到,二次函數(shù)的圖象剛好經過三點.
(1)求二次函數(shù)的解析式及頂點的坐標;
(2)過定點的直線與二次函數(shù)圖象相交于兩點.
①若,求的值;
②證明:無論為何值,恒為直角三角形;
③當直線繞著定點旋轉時,外接圓圓心在一條拋物線上運動,直接寫出該拋物線的表達式.
【答案】(1),;(2)①;②見解析;③.
【解析】
(1)求出點A、B、C的坐標分別為(0,3)、(-1,0)、(3,0),即可求解;
(2)①S△PMN=PQ×(x2-x1),則x2-x1=4,即可求解;②k1k2==-1,即可求解;③取MN的中點H,則點H是△PMN外接圓圓心,即可求解.
(1),則,
即點的坐標分別為、、,
則二次函數(shù)表達式為:,
即:,解得:,
故函數(shù)表達式為:,
點;
(2)將二次函數(shù)與直線的表達式聯(lián)立并整理得:
,
設點的坐標為、,
則,
則:,
同理:,
①,當時,,即點,
,則,
,
解得:;
②點的坐標為、、點,
則直線表達式中的值為:,直線表達式中的值為:,
為: ,
故,
即:恒為直角三角形;
③取的中點,則點是外接圓圓心,
設點坐標為,
則,
,
整理得:,
即:該拋物線的表達式為:.
科目:初中數(shù)學 來源: 題型:
【題目】(本小題滿分9分)如圖,點O為Rt△ABC斜邊AB上的一點,以OA為半徑的⊙O與BC切于點D,與AC交于點E,連接AD.
(1)求證:AD平分∠BAC;
(2)若∠BAC = 60°,OA = 2,求陰影部分的面積(結果保留).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形為正方形.點的坐標為,點的坐標為,反比例函數(shù)的圖象經過點,一次函數(shù)的圖象經過點和點.
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)寫出的解集;
(3)點是反比例函數(shù)圖象上的一點,若的面積恰好等于正方形的面積,求點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AC是⊙O的直徑,BC切⊙O于點C,AB交⊙O于點D,BC的中點為 E,連接DE.
(1)求證:BE DE;
(2)連接EO交⊙O于點 F.填空:
①當∠B __________時,以 D,E,C,O為頂點的四邊形是正方形;
②當∠B __________時,以 A,D,F,O為頂點的四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2013年四川資陽11分)在一個邊長為a(單位:cm)的正方形ABCD中,點E、M分別是線段AC,CD上的動點,連結DE并延長交正方形的邊于點F,過點M作MN⊥DF于H,交AD于N.
(1)如圖1,當點M與點C重合,求證:DF=MN;
(2)如圖2,假設點M從點C出發(fā),以1cm/s的速度沿CD向點D運動,點E同時從點A出發(fā),以cm/s速度沿AC向點C運動,運動時間為t(t>0);
①判斷命題“當點F是邊AB中點時,則點M是邊CD的三等分點”的真假,并說明理由.
②連結FM、FN,△MNF能否為等腰三角形?若能,請寫出a,t之間的關系;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是一輛小汽車與墻平行停放的平面示意圖,汽車靠墻一側OB與墻MN平行且距離為0.8米,一輛小汽車車門寬AO為1.2米,當車門打開角度∠AOB為40°時,車門是否會碰到墻?______;(填“是”或“否”)請簡述你的理由_______.(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著粵港澳大灣區(qū)建設的加速推進,廣東省正加速布局以5G等為代表的戰(zhàn)略性新興產業(yè),據(jù)統(tǒng)計,目前廣東5G基站的數(shù)量約1.5萬座,計劃到2020年底,全省5G基站數(shù)是目前的4倍,到2022年底,全省5G基站數(shù)量將達到17.34萬座。
(1)計劃到2020年底,全省5G基站的數(shù)量是多少萬座?;
(2)按照計劃,求2020年底到2022年底,全省5G基站數(shù)量的年平均增長率。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:正方形中,,繞點順時針旋轉,它的兩邊分別交(或它們的延長線)于點.
當繞點旋轉到時(如圖1),易證.
(1)當繞點旋轉到時(如圖2),線段和之間有怎樣的數(shù)量關系?寫出猜想,并加以證明.
(2)當繞點旋轉到如圖3的位置時,線段和之間又有怎樣的數(shù)量關系?請直接寫出你的猜想.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com