【題目】如圖,四邊形是邊長為1的正方形,與軸正半軸的夾角為15°,點在拋物線的圖象上,則的值為( )
A.B.C.D.
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=x2+bx﹣2與x軸交于A、B兩點,與y軸交于C點,且A(﹣1,0).
(1)求拋物線的解析式及頂點D的坐標;
(2)判斷△ABC的形狀,證明你的結論;
(3)點M是x軸上的一個動點,當△DCM的周長最小時,求點M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知直線l分別與x軸,y軸交于A,B兩點,與雙曲線(k≠0,x>0)分別交于D,E兩點.若點D的坐標為((3.1),點E的坐標為(1,n).
(1)分別求出直線l與雙曲線的解析式;
(2)求△EOD的面積;
(3)若將直線l向下平移m(m>O)個單位,當m為何位時,直線l與雙曲線有且只有一個交點.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是考古學家發(fā)現的古代錢幣的一部分,合肥一中的小明正好學習了圓的知識,他想求其外圓半徑,連接外圓上的兩點A,B,并使AB與內圓相切于點D,作CD⊥AB交外圓于點C.測得CD=10 cm,AB=60 cm,則這個錢幣的外圓半徑為__cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將兩個全等的△ABC和△DBE按圖1方式擺放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,點E落在AB上,DE所在直線交AC所在直線于F。
(1)求證:AF+EF=DE;
(2)若將圖1中的△DBE繞點B順時針旋轉角α,且60°<α<180°,其他條件不變,如圖2,請直接寫出此時線段AF,EF與DE之間的數量關系。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】請閱讀下述材料:
下述形式的繁分數叫做有限連分數,其中n是自然數,a0是整數,a1,a2,a3,…,an是正整數:
其中稱為部分商。
按照以下方式可將任何一個分數轉化為連分數的形式:,則;考慮的倒數,有,從而;再考慮的倒數,有,于是得到a的連分數展開式,它有4個部分商:3,1,3,3;
可利用連分數來求二元一次不定方程的特殊解,以為例,首先將寫成連分數的形式,如上所示;其次,數部分商的個數,本例是偶數個部分商(奇數情況請見下例);最后計算倒數第二個漸近分數,從而是一個特解。
考慮不定方程,先將寫成連分數的形式:。
注意到此連分數有奇數個部分商,將之改寫為偶數個部分商的形式:
計算倒數第二個漸近分數:,所以是的一個特解。
對于分式,有類似的連分式的概念,利用將分數展開為連分數的方法,可以將分式展開為連分式。例如的連分式展開式如下,它有3個部分商: ;
再例如,,它有4個部分商:1,。
請閱讀上述材料,利用所講述的方法,解決下述兩個問題
(1)找出兩個關于x的多項式p和q,使得。
(2)找出兩個關于x的多項式u和v,使得。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在數軸上點表示數,點表示數,點表示數,已知數是最小的正整數,且、滿足.
(1) , , ;
(2)若將數軸折疊,使得點與點重合,則點與數 表示的點重合;
(3)點、、開始在數軸上運動,若點以每秒1個單位長度的速度向左運動,同時,點和點分別以每秒2個單位長度和4個單位長度的速度向右運動,假設秒鐘過后,若點與點之間的距離表示為,點與點之間的距離表示為,點與點之間的距離表示為,求、、的長(用含的式子表示);
(4)在(3)的條件下,的值是否隨著時間的變化而改變?若改變,請說明理由;若不變,請求其值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知,在平面直角坐標系中S△ABC=24,OA=OB,BC=12.
(1)求出三個頂點坐標.
(2)若P點為y軸上的一動點,且△ABP的面積等于△ABC的面積,求點P的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com