【題目】如圖1,已知二次函數(shù)y=ax2+x+c(a≠0)的圖象與y軸交于點(diǎn)A(0,4),與x軸交于點(diǎn)B、C,點(diǎn)C坐標(biāo)為(8,0),連接AB、AC.
(1)請(qǐng)直接寫出二次函數(shù)y=ax2+x+c的表達(dá)式;
(2)判斷△ABC的形狀,并說明理由;
(3)若點(diǎn)N在x軸上運(yùn)動(dòng),當(dāng)以點(diǎn)A、N、C為頂點(diǎn)的三角形是等腰三角形時(shí),請(qǐng)寫出此時(shí)點(diǎn)N的坐標(biāo);
(4)如圖2,若點(diǎn)N在線段BC上運(yùn)動(dòng)(不與點(diǎn)B、C重合),過點(diǎn)N作NM∥AC,交AB于點(diǎn)M,當(dāng)△AMN面積最大時(shí),求此時(shí)點(diǎn)N的坐標(biāo).
【答案】(1)y=﹣x2+x+4;(2)△ABC是直角三角形(3)若點(diǎn)N在x軸上運(yùn)動(dòng),當(dāng)以點(diǎn)A、N、C為頂點(diǎn)的三角形是等腰三角形時(shí),點(diǎn)N的坐標(biāo)分別為(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0)(4)當(dāng)△AMN面積最大時(shí),N點(diǎn)坐標(biāo)為(3,0)
【解析】
試題(1)由A點(diǎn)坐標(biāo)確定解析式中c值,再把C點(diǎn)坐標(biāo)代入解析式求出a值,從而確定此解析式;(2)根據(jù)解析式求出B點(diǎn)坐標(biāo),在Rt△AOB中,利用勾股定理求出AB,在Rt△AOC中,利用勾股定理求出AC,然后利用勾股定理的逆定理驗(yàn)證△ABC是直角三角形;(3)滿足△ANC為等腰三角形的N點(diǎn)有四個(gè),在x軸負(fù)半軸有兩點(diǎn),滿足AN=AC,AC=NC,在x軸正半軸存在兩點(diǎn),滿足AN=CN,AC=NC,然后先求出AC長,利用等腰三角形兩腰相等,和勾股定理易求出N點(diǎn)橫坐標(biāo),因?yàn)?/span>N在x軸上,所以縱坐標(biāo)是0,從而得到N點(diǎn)坐標(biāo).(4)先找到自變量,設(shè)點(diǎn)N的坐標(biāo)為(n,0),則BN=n+2,過M點(diǎn)作MD⊥x軸于點(diǎn)D,利用平行線分線段成比例定理和三角形相似把MD用n表示出來,這樣△AMN的面積就用△ABN的面積減去△BMN的面積,從而建立S與n的二次函數(shù),討論n的取值及函數(shù)最大值,即可求出△AMN面積最大時(shí),點(diǎn)N的坐標(biāo).
試題解析:(1)∵A(0,4),∴c=4,,把點(diǎn)C坐標(biāo)(8,0)代入解析式,得:a=-,∴二次函數(shù)表達(dá)式為;(2)令y=0,則解得,x1=8,x2="-2" ,∴點(diǎn)B的坐標(biāo)為(-2,0),由已知可得,在Rt△AOB中,AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+ AC2=20+80=102=BC2,∴△ABC是直角三角形;(3)由勾股定理先求出AC,AC==,①在x軸負(fù)半軸,當(dāng)AC=AN時(shí),NO=CO=8,∴此時(shí)N(-8,0);②在x軸負(fù)半軸,當(dāng)AC=NC時(shí),NC=AC=,∵CO=8,∴NO=-8,∴此時(shí)N(8-,0);③在x軸正半軸,當(dāng)AN=CN時(shí),設(shè)CN=x,則AN=x,ON=8-x,在Rt△AON中,+=,解得:x=5,∴ON=3,∴此時(shí)N(3,0);④在x軸正半軸當(dāng)AC=NC時(shí),AC=NC=,∴ON=+8,∴此時(shí)N(+8,0);綜上所述:滿足條件的N點(diǎn)坐標(biāo)是(-8,0)、(8-,0)、(3,0)、(8+,0);(4)設(shè)點(diǎn)N的坐標(biāo)為(n,0),則BN=n+2,過M點(diǎn)作MD⊥x軸于點(diǎn)D,∴MD∥OA,∴△BMD∽△BAO,,∵M(jìn)N∥AC,∴,∴,∵OA=4,BC=10,BN=n+2,∴MD=(n+2),∵S△AMN= S△ABN- S△BMN=
=-+5,∵-<0,∴n=3時(shí),S有最大值,∴當(dāng)△AMN面積最大時(shí),N點(diǎn)坐標(biāo)為(3,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著我國經(jīng)濟(jì)的發(fā)展,高鐵逐漸成為了主要的交通工具,一般的高鐵G字頭的高速動(dòng)車組以D字頭的動(dòng)車組,由大連到北京的G377的平均速度是D31的平均速度的倍,行駛相同的路程千米,G377少用個(gè)小時(shí)。
(1)求D31的平均速度。
(2)若以“速度與票價(jià)的比值”定義這兩種列車的性價(jià)比,人們出行都喜歡選擇性價(jià)比高的方式,現(xiàn)階段D31票價(jià)為元/張,G377票件為元/張,如果你又機(jī)會(huì)給有關(guān)部門提一個(gè)合理化建議,使G377得性價(jià)比達(dá)到D31的性價(jià)比,你如何建議,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A為線段BC外一動(dòng)點(diǎn),且BC=4,AB=3,分別以AB,AC為邊,作等邊三角形ABD和等邊三角形ACE,連接CD,BE.
(1)請(qǐng)找出圖中與BE相等的線段,并說明理由;
(2)當(dāng)∠ABC=30°時(shí),求線段BE長;
(3)直接寫出線段BE長的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)閱讀理解:
如圖①,在△ABC中,若AB=5,AC=3,求BC邊上的中線AD的取值范圍.
解決此問題可以用如下方法:延長AD到點(diǎn)E使DE=AD,再連接BE(或?qū)?/span>△ACD繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三邊的關(guān)系即可判斷.中線AD的取值范圍是___________;
(2)問題解決: 如圖②,在△ABC中,D是BC邊上的中點(diǎn),DE⊥DF于點(diǎn)D,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF,求證:BE+CF>EF;
(3)問題拓展:如圖③,在四邊形ABCD中,∠B+∠D=180°,CB=CD,以C為頂點(diǎn)作∠ECF,使得角的兩邊分別交AB,AD于E、F兩點(diǎn),連接EF,且EF=BE+DF,試探索∠ECF與∠A之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AB=AC,CD是∠ACB的平分線,DE∥BC,交AC于點(diǎn) E.
(1)求證:DE=CE.
(2)若∠CDE=35°,求∠A 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別以線段AB兩端點(diǎn)A,B為圓心,以大于AB長為半徑畫弧,兩弧交于C,D兩點(diǎn),作直線CD交AB于點(diǎn)M,DE∥AB,BE∥CD.
(1)判斷四邊形ACBD的形狀,并說明理由;
(2)求證:ME=AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長為3,點(diǎn)E,F(xiàn)分別在射線DC,DA上運(yùn)動(dòng),且DE=DF.連接BF,作EH⊥BF所在直線于點(diǎn)H,連接CH.
(1)如圖1,若點(diǎn)E是DC的中點(diǎn),CH與AB之間的數(shù)量關(guān)系是 ;
(2)如圖2,當(dāng)點(diǎn)E在DC邊上且不是DC的中點(diǎn)時(shí),(1)中的結(jié)論是否成立?若成立給出證明;若不成立,說明理由;
(3)如圖3,當(dāng)點(diǎn)E,F(xiàn)分別在射線DC,DA上運(yùn)動(dòng)時(shí),連接DH,過點(diǎn)D作直線DH的垂線,交直線BF于點(diǎn)K,連接CK,請(qǐng)直接寫出線段CK長的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“中國漢字聽寫大會(huì)”是由中央電視臺(tái)和國家語言文字工作委員會(huì)聯(lián)合主辦的節(jié)目,希望通過節(jié)目的播出,能吸引更多的人關(guān)注對(duì)漢字文化的學(xué)習(xí).某校也開展了一次“漢字聽寫”比賽,每位參賽學(xué)生聽寫40個(gè)漢字.比賽結(jié)束后隨機(jī)抽取部分學(xué)生的聽寫結(jié)果,按聽寫正確的漢字個(gè)數(shù)x繪制成了以下不完整的統(tǒng)計(jì)圖.
根據(jù)以上信息回答下列問題:
(1)本次共隨機(jī)抽取了 名學(xué)生進(jìn)行調(diào)查,聽寫正確的漢字個(gè)數(shù)x在 范圍的人數(shù)最多;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)各組的組中值如下表所示.若用各組的組中值代表各組每位學(xué)生聽寫正確的漢字個(gè)數(shù),求被調(diào)查學(xué)生聽寫正確的漢字個(gè)數(shù)的平均數(shù);
聽寫正確的漢字個(gè)數(shù)x | 組中值 |
1≤x<11 | 6 |
11≤x<21 | 16 |
21≤x<31 | 26 |
31≤x<41 | 36 |
(4)該校共有1350名學(xué)生,如果聽寫正確的漢字個(gè)數(shù)不少于21個(gè)定為良好,請(qǐng)你估計(jì)該校本次“漢字聽寫”比賽達(dá)到良好的學(xué)生人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com