【題目】已知:如圖,在坐標(biāo)平面內(nèi)△ABC的頂點坐標(biāo)分別為A(0,2),B(3,3),C(2,1),(正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度)
(1)畫出△ABC關(guān)于原點對稱的△A1B1C1,并直接寫出點C1點的坐標(biāo);
(2)畫出△ABC繞點A順時針方向旋轉(zhuǎn)90°后得到的△A2B2C2,并直接寫出C2點的坐標(biāo).
【答案】(1)見解析;(2)見解析
【解析】試題分析:(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C關(guān)于原點對稱的點A1、B1、C1的位置,然后順次連接即可,再根據(jù)平面直角坐標(biāo)系寫出點C1的坐標(biāo);
(2)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C繞點A順時針方向旋轉(zhuǎn)90°后對應(yīng)點A2、B2、C2的位置,然后順次連接即可,再根據(jù)平面直角坐標(biāo)系寫出點C2的坐標(biāo).
試題解析:解:(1)△A1B1C1如圖所示,C1(﹣2,﹣1);
(2)△A2B2C2如圖所示,C2(﹣1,0).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,點H是BC的中點,作射線AH,在線段AH及其延長線上分別取點E,F,連接BE,CF.
(1)如圖1,請你添加一個條件_____________,使得△BEH≌△CFH:
(2)如圖2,在(1)的條件下,當(dāng)BH與EH滿足什么關(guān)系時,四邊形BFCE是矩形,并給出證明.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=2,BC=6,直線EF經(jīng)過對角線BD的中點O,分別交邊AD,BC于點E,F,點G,H分別是OB,OD的中點,當(dāng)四邊形EGFH為矩形時,則BF的長_________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,E是AB邊上一點,且∠A=∠EDF=60°,有下列結(jié)論:①AE=BF;②△DEF是等邊三角形;③△BEF是等腰三角形;④∠ADE=∠BEF,其中結(jié)論正確的個數(shù)是( 。
A.3
B.4
C.1
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,是直線上的一點,是直角, 平分.
(1)若,則的度數(shù)為 °;
(2)將圖 1 中的繞頂點 順時針旋轉(zhuǎn)至圖 2 的位置,其他條件不變, 探究和的度數(shù)之間的關(guān)系,寫出你的結(jié)論,并說明理由;
(3)將圖 1 中的繞頂點 順時針旋轉(zhuǎn)至圖 3 的位置,其他條件不變,直接寫出 和的度數(shù)之間的關(guān)系: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB為⊙O的直徑,AD平分∠CAB,AC⊥CD,垂足為C.
(1)判斷CD與⊙O的位置關(guān)系,并說明理由;
(2)求證:∠CDA=∠AED.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AE=CE.
(1)用尺規(guī)或只用無刻度的直尺作出的角平分線,保留作圖痕跡,不需要寫作法.
(2)設(shè)的角平分線交邊AD于點F,連接CF,求證:四邊形AECF為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:甲乙兩車分別從相距300千米的A、B兩地同時出發(fā)相向而行,其中甲到達(dá)B地后立即返回,如圖是它們離各自出發(fā)地的距離y(千米)與行駛時間x(小時)之間的函數(shù)圖象.
(1)求甲車離出發(fā)地的距離y甲(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)它們出發(fā)小時時,離各自出發(fā)地的距離相等,求乙車離出發(fā)地的距離y乙(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)在(2)的條件下,求它們在行駛的過程中相遇的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E為CD的中點,F(xiàn)為BE上的一點,連結(jié)CF并延長交AB于點M,MN⊥CM交射線AD于點N.
(1)當(dāng)F為BE中點時,求證:AM=CE;
(2)若 =2,求的值;
(3)若=n,當(dāng)n為何值時,MN∥BE?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com