【題目】已知拋物線y=x2+bx+c的對稱軸為x=2,且過點(diǎn)C(0,3)

(1)求此拋物線的解析式;

(2)證明:該拋物線恒在直線y=﹣2x+1上方.

【答案】(1)y=x2﹣4x+3;(2)證明見解析.

【解析】

(1)根據(jù)對稱軸即可求出b的值,根據(jù)過點(diǎn)C(0,3),即可求出c的值.

(2)設(shè)y1=x2﹣4x+3,y2=﹣2x+1,作差,配方,即可證明.

(1)∵拋物線y=x2+bx+c的對稱軸為x=2,

,得,b=﹣4,

∵拋物線y=x2+bx+c過點(diǎn)C(0,3),

c=3,

∴此拋物線的解析式為:y=x2﹣4x+3;

(2)證明:設(shè)y1=x2﹣4x+3,y2=﹣2x+1,

y1﹣y2=(x2﹣4x+3)﹣(﹣2x+1)=x2﹣2x+2=(x﹣1)2+1>0,

y1>y2

∴該拋物線恒在直線y=﹣2x+1上方.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人同時(shí)從A地前往相距5千米的B.甲騎自行車,途中修車耽誤了20分鐘,甲行駛的路程(千米)關(guān)于時(shí)間(分鐘)的函數(shù)圖像如圖所示;乙慢跑所行的路程(千米)關(guān)于時(shí)間(分鐘)的函數(shù)解析式為.

1)在圖中畫出乙慢跑所行的路程關(guān)于時(shí)間的函數(shù)圖像;

2)乙慢跑的速度是每分鐘________千米;

3)甲修車后行駛的速度是每分鐘________千米;

4)甲、乙兩人在出發(fā)后,中途________分鐘時(shí)相遇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】大豐區(qū)在創(chuàng)建全國文明城市過程中,決定購買A,B兩種樹苗對某路段道路進(jìn)行綠化改造,已知購買A種樹苗5棵,B種樹苗10棵,需要1300元;購買A種樹苗3棵,B種樹苗5棵,需要710元.

(1)求購買A,B兩種樹苗每棵各需要多少元?

(2)現(xiàn)需購進(jìn)這兩種樹苗共100棵,其中A種樹苗購進(jìn)x棵,考慮到綠化效果和資金周轉(zhuǎn),A種樹苗不能少于30棵,且用于購買這兩種樹苗的資金不能超過8650元,試求x 的取值范圍。

(3)某包工隊(duì)承包了該項(xiàng)種植任務(wù),若種好一棵A種樹苗需付工錢15元,種好一棵B種樹苗需付工錢25元,在(2)的條件下,設(shè)種好這100棵樹苗共需付工錢y元,,試求出yx的函數(shù)表達(dá)式,并寫出所付的種植工錢最少的購買方案及最少工錢是多少元。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ACB90°,AC8cm,BC6cm.點(diǎn)PA點(diǎn)出發(fā)沿ACB路徑以每秒1cm的運(yùn)動速度向終點(diǎn)B運(yùn)動;同時(shí)點(diǎn)QB點(diǎn)出發(fā)沿BCA路徑以每秒vcm的速度向終點(diǎn)A運(yùn)動.分別過PQPEABE,QFABF

1)設(shè)運(yùn)動時(shí)間為t秒,當(dāng)t   時(shí),直線BP平分△ABC的面積.

2)當(dāng)QBC邊上運(yùn)動時(shí)(t0),且v1時(shí),連接AQ、連接BP,線段AQBP可能相等嗎?若能,求出t的值;若不能,請說明理由.

3)當(dāng)Q的速度v為多少時(shí),存在某一時(shí)刻(或時(shí)間段)可以使得△PAE與△QBF全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的平面直角坐標(biāo)系中,OA1B1是邊長為2的等邊三角形,作B2A2B1OA1B1關(guān)于點(diǎn)B1成中心對稱,再作B2A3B3B2A2B1關(guān)于點(diǎn)B2成中心對稱,如此作下去,則B2nA2n+1B2n+1(n是正整數(shù))的頂點(diǎn)A2n+1的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABD內(nèi)接于圓O,BAD=60°,AC為圓O的直徑.ACBDP點(diǎn)且PB=2,PD=4,AD的長為( )

A. 2 B. 2 C. 2 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2+bx+c的對稱軸為x=2,且過點(diǎn)C(0,3)

(1)求此拋物線的解析式;

(2)證明:該拋物線恒在直線y=﹣2x+1上方.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,CBCD,∠D+ABC180°,CEADE

1)求證:AC平分∠DAB;

2)若AE3ED6,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2+bx+c的圖象經(jīng)過點(diǎn)A(﹣3,6),并與x軸交于點(diǎn)B(﹣1,0)和點(diǎn)C,與y軸交于點(diǎn)E,頂點(diǎn)為P,對稱軸與x軸交于點(diǎn)D

Ⅰ)求這個(gè)二次函數(shù)的解析式;

Ⅱ)連接CP,DCP是什么特殊形狀的三角形?并加以說明;

Ⅲ)點(diǎn)Q是第一象限的拋物線上一點(diǎn),且滿足∠QEO=BEO,求出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案