【題目】已知拋物線過(guò)點(diǎn)A(m-2,n), B(m+4,n),C(m,).
(1)b=__________(用含m的代數(shù)式表示);
(2)求△ABC的面積;
(3)當(dāng)時(shí),均有,求m的值.
【答案】(1)b=-2m-2;(2)24;(3).
【解析】
(1)根據(jù)A(m-2,n), B(m+4,n)縱坐標(biāo)一致,結(jié)合對(duì)稱軸即可求解;
(2)先用含m的代數(shù)式表示c,再帶入A點(diǎn)坐標(biāo)即可求出n=3,最后利用鉛錘法即可求出△ABC的面積;
(3)先用只含m的代數(shù)式表示二次函數(shù)解析式,再結(jié)合帶取值范圍的二次函數(shù)最值求法分類(lèi)討論即可.
(1)∵過(guò)點(diǎn)A(m-2,n), B(m+4,n),
∴對(duì)稱軸
∴
(2)∵
∴
把C(m,)代入
∴
∴
把A(m-2,n)代入
得
∴n=3
∴A(m-2,3), B(m+4,3),C(m,)
∴AB=6
C點(diǎn)到x軸的距離為:3﹣(-5)=8,
∴S△ABC=×6×8=24
(3)∵n=3
∴
∴
∴當(dāng)時(shí)
∵
∴由函數(shù)增減性知
即
∴當(dāng)時(shí)
由函數(shù)增減性知時(shí),
∴
∴(舍)
當(dāng)時(shí)
由函數(shù)增減性知時(shí),
∴
∴(舍)
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),菱形ABCD的頂點(diǎn)B在x軸的正半軸上,點(diǎn)A坐標(biāo)為(-4,0),點(diǎn)D的坐標(biāo)為(-1,4),反比例函數(shù)的圖象恰好經(jīng)過(guò)點(diǎn)C,則k的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a≠0)交x軸于點(diǎn)A(2,0),B(﹣3,0),交y軸于點(diǎn)C,且經(jīng)過(guò)點(diǎn)d(﹣6,﹣6),連接AD,BD.
(1)求該拋物線的函數(shù)關(guān)系式;
(2)若點(diǎn)M為X軸上方的拋物線上一點(diǎn),能否在點(diǎn)A左側(cè)的x軸上找到另一點(diǎn)N,使得△AMN與△ABD相似?若相似,請(qǐng)求出此時(shí)點(diǎn)M、點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)P是直線AD上方的拋物線上一動(dòng)點(diǎn)(不與A,D重合),過(guò)點(diǎn)P作PQ∥y軸交直線AD于點(diǎn)Q,以PQ為直徑作⊙E,則⊙E在直線AD上所截得的線段長(zhǎng)度的最大值等于 .(直接寫(xiě)出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018無(wú)錫市體育中考男生項(xiàng)目分為速度耐力類(lèi)、力量類(lèi)和靈巧類(lèi),每位考生只能在三類(lèi)中各選一項(xiàng)進(jìn)行考試.其中速度耐力類(lèi)項(xiàng)目有:50米跑、800米跑、50米游泳;力量類(lèi)項(xiàng)目有:擲實(shí)心球、引體向上;靈巧類(lèi)項(xiàng)目有:30秒鐘跳繩、立定跳遠(yuǎn)、俯臥撐、籃球運(yùn)球.男生小明“50米跑”是強(qiáng)項(xiàng),他決定必選,其它項(xiàng)目在平時(shí)測(cè)試中成績(jī)完全相同,他決定隨機(jī)選擇.
(1)請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法求“小明‘選50米跑、引體向上和立定跳遠(yuǎn)’”的概率;
(2)小明所選的項(xiàng)目中有立定跳遠(yuǎn)的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線與直線都經(jīng)過(guò)、兩點(diǎn),該拋物線的頂點(diǎn)為C.
(1)求此拋物線和直線的解析式;
(2)設(shè)直線與該拋物線的對(duì)稱軸交于點(diǎn)E,在射線上是否存在一點(diǎn)M,過(guò)M作x軸的垂線交拋物線于點(diǎn)N,使點(diǎn)M、N、C、E是平行四邊形的四個(gè)頂點(diǎn)?若存在,求點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)設(shè)點(diǎn)P是直線下方拋物線上的一動(dòng)點(diǎn),當(dāng)面積最大時(shí),求點(diǎn)P的坐標(biāo),并求面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是的直徑,是弦,點(diǎn)在圓外,于,交于點(diǎn),連接,,,.
(1)求證:是的切線;
(2)求證:;
(3)設(shè)的面積為,的面積為,若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了扎實(shí)推進(jìn)精準(zhǔn)扶貧工作,某市出臺(tái)了民生兜底、醫(yī)保脫貧、教育教助、產(chǎn)業(yè)扶持、養(yǎng)老托管和易地搬遷這六種幫扶措施,每戶貧困戶都享受了2到5種幫扶措施,現(xiàn)把享受了2種、3種、4種和5種幫扶措施的貧困戶分別稱為類(lèi)貧困戶。為檢查幫扶措施是否落實(shí),隨機(jī)抽取了若干貧困戶進(jìn)行調(diào)查,現(xiàn)將收集的數(shù)據(jù)繪制成下面兩幅不完整的統(tǒng)計(jì)圖:
請(qǐng)根據(jù)圖中信息回答下面的問(wèn)題:
(1)本次抽樣調(diào)查了多少戶貧困戶;
(2)抽查了多少戶類(lèi)貧困戶?并補(bǔ)全統(tǒng)計(jì)圖;
(3)若該地共有1300戶貧困戶,請(qǐng)估計(jì)至少得到4項(xiàng)幫扶措施的大約有多少戶;
(4)為更好地做好精準(zhǔn)扶貧工作,現(xiàn)準(zhǔn)備從類(lèi)貧困戶中的甲、乙、丙、丁四戶中隨機(jī)選取兩戶進(jìn)行重點(diǎn)幫扶,請(qǐng)用樹(shù)狀圖或列表法求出恰好選中甲和丁的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖8,點(diǎn)D是⊙O的直徑CA延長(zhǎng)線上一點(diǎn),點(diǎn)B在⊙O上,且AB=AD=AO.
(1)求證:BD是⊙O的切線.
(2)若點(diǎn)E是劣弧BC上一點(diǎn),AE與BC相交于點(diǎn)F,且△BEF的面積為8,cos∠BFA=,求△ACF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=﹣x+4與拋物線y=﹣x2+bx+c交于A,B兩點(diǎn),點(diǎn)A在y軸上,點(diǎn)B在x軸上.
(1)求拋物線的解析式;
(2)在x軸下方的拋物線上存在一點(diǎn)P,使得∠ABP=90°,求出點(diǎn)P坐標(biāo);
(3)點(diǎn)E是拋物線對(duì)稱軸上一點(diǎn),點(diǎn)F是拋物線上一點(diǎn),是否存在點(diǎn)E和點(diǎn)F使得以點(diǎn)E,F,B,O為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com