【題目】補全解答過程:

1)如圖,線段AC=4,線段BC=9,點MAC的中點,在CB上取一點N,CNNB=1:2,求MN的長.

解:∵MAC的中點,AC=4,

MC= (填線段名稱)=

又因為CNNB=12,BC=9,

CN= (填線段名稱)=

MN= (填線段名稱)+ (填線段名稱)=5

MN的長為5

2)已知:如圖,直線ABCD,直線EF與直線AB,CD分別交于點GH;GM平分∠FGB,∠360°.求∠1的度數(shù).

解:∵EFCD交于點H,(已知)

∴∠3=∠4.(

∵∠360°,(

∴∠460°

ABCD,EFABCD交于點G,H,(已知)

∴∠4+FGB180°.(

∴∠FGB

GM平分∠FGB,(已知)

∴∠1 °.(角平分線的定義)

【答案】1AC;2;BC3;MC;NC;(2)對頂角相等;已知;兩直線平行,同旁內角互補;120°;60

【解析】

(1) 根據(jù)線段中點的性質,可得MC的長,根據(jù)線段長度的比,可得CN的長,根據(jù)線段的和差,可得答案;

(2) 依據(jù)對頂角相等以及平行線的性質,即可得到∠4=60°,∠FGB=120°,再根據(jù)角平分線的定義,即可得出∠1=60°.

1 解:∵MAC的中點,AC=4,
MC=AC=2,
又因為CNNB=12BC=9,
NC=BC=3
MN=MC+NC=5
MN的長為5
故答案為:AC;2BC;3MC;NC

2 解:∵EFCD交于點H,(已知)
∴∠3=4.(對頂角相等)
∵∠3=60°,(已知)
∴∠4=60°.
ABCD,EFAB,CD交于點G,H,(已知)
∴∠4+FGB=180°.(兩直線平行,同旁內角互補)
∴∠FGB=120°.
GM平分∠FGB,(已知)
∴∠1=60°.(角平分線的定義)
故答案為:對頂角相等;已知;兩直線平行,同旁內角互補;120°;60

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知數(shù)軸上點A表示的數(shù)為8,B是數(shù)軸上位于點A左側一點,且AB=20,

(1)寫出數(shù)軸上點B表示的數(shù)   ;

(2)|5﹣3|表示53之差的絕對值,實際上也可理解為53兩數(shù)在數(shù)軸上所對的兩點之間的距離.如|x﹣3|的幾何意義是數(shù)軸上表示有理數(shù)x的點與表示有理數(shù)3的點之間的距離.試探索:

①:若|x﹣8|=2,則x=   

:|x+12|+|x﹣8|的最小值為   

(3)動點PO點出發(fā),以每秒5個單位長度的速度沿數(shù)軸向右勻速運動,設運動時間為t(t>0)秒.求當t為多少秒時?A,P兩點之間的距離為2;

(4)動點P,Q分別從O,B兩點,同時出發(fā),點P以每秒5個單位長度沿數(shù)軸向右勻速運動,Q點以P點速度的兩倍,沿數(shù)軸向右勻速運動,設運動時間為t(t>0)秒.問當t為多少秒時?P,Q之間的距離為4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB,CD相交于點O,OE平分AOD,OFOC,

1圖中AOF的余角是 把符合條件的角都填出來;

2如果AOC=160°,那么根據(jù) 可得BOD= 度;

3如果1=32°,求2和3的度數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】微信運動和騰訊公益推出了一個愛心公益活動:一天中走路若步數(shù)達到10000步及以上,則可通過微信運動和騰訊基金會向公益活動捐款,每步可捐0.0002元;若步數(shù)在10000步以下,則不能參與愛心公益捐款.

1)某天小齊的步數(shù)為15000步,求他這天為愛心公益可捐款多少錢?

2)己知甲、乙、丙三人某天通過步數(shù)共捐款8.4元,且甲的步數(shù):乙的步數(shù):丙的步數(shù),求這天甲走了多少步?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB30°,點M、N分別在邊OA、OB上,且OM2,ON6,點PQ 分別在邊OB、OA上,則MP+PQ+QN的最小值是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了比較市場上甲、乙兩種電子鐘每日走時誤差的情況,從這兩種電子鐘中,各隨機抽取10臺進行測試,兩種電子鐘走時誤差的數(shù)據(jù)如下表(單位:秒):

編號

類型

甲種電子鐘

1

-3

-4

4

2

-2

2

-1

-1

2

乙種電子鐘

4

-3

-1

2

-2

1

-2

2

-2

1

(1) 計算甲、乙兩種電子鐘走時誤差的平均數(shù);

(2) 計算甲、乙兩種電子鐘走時誤差的方差;

(3) 根據(jù)經驗,走時穩(wěn)定性較好的電子鐘質量更優(yōu).若兩種類型的電子鐘價格相同,請問:你買哪種電子鐘?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校有3名老師決定帶領名小學生去植物園游玩,有兩家旅行社可供選擇,甲旅行社的收費標準為老師全價,學生七折優(yōu)惠;而乙旅行社不分老師和學生一律八折優(yōu)惠,這兩家旅行社全價都是每人500.

1)用代數(shù)式表示這3位老師和名學生分別在甲、乙兩家旅行社的總費用;

2)如果這兩家旅行社的總費用一樣,那么老師可以帶幾名學生?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市公共交通收費如下:

公交票價

里程(千米)

票價(元)

刷卡優(yōu)惠后付款(元)

0-10

2

1

10-15

3

1.5

15-20

4

2

20-25

5

2.5

25-30

6

3

以后每增加5千米

增加1

增加0.5

地鐵票價

里程(千米)

票價(元)

0-6

3

6-12

4

12-22

5

22-32

6

32-52

7

52-72

8

以后每增加20千米

增加1

(公交票價10千米(含)內2元,不足10千米按10千米計算,其他里程類同;地鐵票價6千米(含)內3元,不足6千米按6千米計算,其他里程類同)

1)張阿姨周日去看望父母,可是張阿姨忘了帶一卡通,請你幫助張阿姨思考兩個問題:

若到父母家無論乘公交車還是地鐵距離都是24千米,選擇哪種公交交通工具費用較少?

若只用10元錢乘坐公交或地鐵,選擇哪種公共交通工具乘坐的里程更遠?

2)張阿姨下周日計劃使用一卡通刷卡乘公共交通到景點游玩,若里程大于35千米且小于120千米,公交、地鐵均可直達.請問:選擇公交還是選擇地鐵出行更省錢?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】、兩地相距,甲、乙兩車分別沿同一條路線從地出發(fā)駛往地,已知甲車的速度為,乙車的速度為,甲車先出發(fā)后乙車再出發(fā),乙車到達地后再原地等甲車.

(1)求乙車出發(fā)多長時間追上甲車?

(2)求乙車出發(fā)多長時間與甲車相距?

查看答案和解析>>

同步練習冊答案