【題目】如圖,直線AB,CD相交于點(diǎn)O,OE平分∠AOD,OF⊥OC,
(1)圖中∠AOF的余角是 (把符合條件的角都填出來(lái));
(2)如果∠AOC=160°,那么根據(jù) 可得∠BOD= 度;
(3)如果∠1=32°,求∠2和∠3的度數(shù).
【答案】(1)∠BOC、 ∠AOD;(2)對(duì)頂角相等; 160°;(3)∠2=64°,∠3=26°
【解析】
試題分析:(1)根據(jù)垂直得出∠AOF的余角為∠AOD,然后根據(jù)對(duì)頂角的性質(zhì)得出∠BOC;(2)根據(jù)對(duì)頂角相等的性質(zhì)得出答案;(3)首先根據(jù)角平分線的性質(zhì)得出∠AOD的度數(shù),然后根據(jù)對(duì)頂角的性質(zhì)得出∠2的度數(shù),最后根據(jù)垂直的性質(zhì)得出∠3的度數(shù).
試題解析:(1)∠BOC、 ∠AOD
(2)對(duì)頂角相等; 160°
(3)∵OE平分∠AOD ∴∠AOD=2∠1=2×32°=64° ∴∠2=∠AOD=64°
∵OF⊥OC ∴∠DOF=∠COF=90° ∴∠3=90°-∠AOD=90°-64°=26°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以四邊形ABCD的邊AB,AD為邊分別向外側(cè)作等邊三角形ABF和等邊三角形ADE,連接EB,FD,交點(diǎn)為G.
(1)當(dāng)四邊形ABCD為正方形時(shí),如圖①,EB和FD的數(shù)量關(guān)系是 ;
(2)當(dāng)四邊形ABCD為矩形時(shí),如圖②,EB和FD具有怎樣的數(shù)量關(guān)系?請(qǐng)加以證明;
(3)如圖③,四邊形ABCD由正方形到矩形再到一般平行四邊形的變化過(guò)程中,EB和FD具有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出結(jié)論,無(wú)需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】江南農(nóng)場(chǎng)收割小麥,已知1臺(tái)大型收割機(jī)和3臺(tái)小型收割機(jī)1小時(shí)可以收割小麥1.4公頃,2臺(tái)大型收割機(jī)和5臺(tái)小型收割機(jī)1小時(shí)可以收割小麥2.5公頃.
(1)每臺(tái)大型收割機(jī)和每臺(tái)小型收割機(jī)1小時(shí)收割小麥各多少公頃?
(2)大型收割機(jī)每小時(shí)費(fèi)用為300元,小型收割機(jī)每小時(shí)費(fèi)用為200元,兩種型號(hào)的收割機(jī)一共有10臺(tái),要求2小時(shí)完成8公頃小麥的收割任務(wù),且總費(fèi)用不超過(guò)5400元,有幾種方案?請(qǐng)指出費(fèi)用最低的一種方案,并求出相應(yīng)的費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l1:y=-2x與直線l2:y=kx+b在同一平面直角坐標(biāo)系內(nèi)交于點(diǎn)P .
(1)直接寫(xiě)出不等式-2x>kx+b 的解集 ;
(2)設(shè)直線l2 與x 軸交于點(diǎn)A ,△OAP的面積為12 ,求l2的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為弘揚(yáng)中華傳統(tǒng)文化,了解學(xué)生整體聽(tīng)寫(xiě)能力,某校組織全校1000名學(xué)生進(jìn)行一次漢字聽(tīng)寫(xiě)大賽初賽,從中抽取部分學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì)分析,根據(jù)測(cè)試成績(jī)繪制出了頻數(shù)分布表和頻數(shù)分布直方圖:
分組/分 | 頻數(shù) | 頻率 |
50≤x<60 | 6 | 0.12 |
60≤x<70 | a | 0.28 |
70≤x<80 | 16 | 0.32 |
80≤x<90 | 10 | 0.20 |
90≤x≤100 | c | b |
合計(jì) | 50 | 1.00 |
(1)表中的a=______,b=______,c=______;
(2)把上面的頻數(shù)分布直方圖補(bǔ)充完整,并畫(huà)出頻數(shù)分布折線圖;
(3)如果成績(jī)達(dá)到90及90分以上者為優(yōu)秀,可推薦參加進(jìn)入決賽,那么請(qǐng)你估計(jì)該校進(jìn)入決賽的學(xué)生大約有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD中,AB=2,∠B=60°,M為AB的中點(diǎn).動(dòng)點(diǎn)P在菱形的邊上從點(diǎn)B出發(fā),沿B→C→D的方向運(yùn)動(dòng),到達(dá)點(diǎn)D時(shí)停止.連接MP,設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,MP 2=y,則表示y與x的函數(shù)關(guān)系的圖象大致為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A(m,6),B(n,1)在反比例函數(shù)y=的圖象上,AD⊥x軸于點(diǎn)D,BC⊥x軸于點(diǎn)C,點(diǎn)E在CD上,CD=5,△ABE的面積為10,則點(diǎn)E的坐標(biāo)是( )
A. (3,0) B. (4,0) C. (5,0) D. (6,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】補(bǔ)全解答過(guò)程:
(1)如圖,線段AC=4,線段BC=9,點(diǎn)M是AC的中點(diǎn),在CB上取一點(diǎn)N,CN:NB=1:2,求MN的長(zhǎng).
解:∵M是AC的中點(diǎn),AC=4,
∴MC= (填線段名稱(chēng))= ,
又因?yàn)?/span>CN:NB=1:2,BC=9,
∴CN= (填線段名稱(chēng))= .
∴MN= (填線段名稱(chēng))+ (填線段名稱(chēng))=5.
∴MN的長(zhǎng)為5.
(2)已知:如圖,直線AB∥CD,直線EF與直線AB,CD分別交于點(diǎn)G,H;GM平分∠FGB,∠3=60°.求∠1的度數(shù).
解:∵EF與CD交于點(diǎn)H,(已知)
∴∠3=∠4.( )
∵∠3=60°,( )
∴∠4=60°.
∵AB∥CD,EF與AB,CD交于點(diǎn)G,H,(已知)
∴∠4+∠FGB=180°.( )
∴∠FGB= .
∵GM平分∠FGB,(已知)
∴∠1= °.(角平分線的定義)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,BC=24cm,P,Q,M,N分別從A,B,C,D出發(fā)沿AD,BC,CB,DA方向在矩形的邊上同時(shí)運(yùn)動(dòng),當(dāng)有一個(gè)點(diǎn)先到達(dá)所在運(yùn)動(dòng)邊的另一個(gè)端點(diǎn)時(shí),運(yùn)動(dòng)即停止.
已知在相同時(shí)間內(nèi),若BQ=x cm(x≠0),則AP=2x cm,CM=3x cm,DN=x2cm.
(1)當(dāng)x為何值時(shí),以P、N兩點(diǎn)重合?
(2)問(wèn)Q、M兩點(diǎn)能重合嗎?若Q、M兩點(diǎn)能重合,則求出相應(yīng)的x的值;若Q、M兩點(diǎn)不能重合,請(qǐng)說(shuō)明理由.
(3)當(dāng)x為何值時(shí),以P,Q,M,N為頂點(diǎn)的四邊形是平行四邊形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com