【題目】ABC中,∠C=Rt∠,AC=3,BC=4,以點C為圓心,CA為半徑的圓與AB、BC分別交于點E、D,則AE的長為( )

A. B. C. D.

【答案】C

【解析】

RtABC中,由勾股定理可直接求得AB的長;過CCMAB,交AB于點M,由垂徑定理可得MAE的中點,在RtACM中,根據(jù)勾股定理得AM的長,從而得到AE的長.

解:在RtABC中,
AC=3BC=4,
AB==5
CCMAB,交AB于點M,如圖所示,


由垂徑定理可得MAE的中點,
SABC=ACBC=ABCM,且AC=3,BC=4,AB=5
CM=,
RtACM中,根據(jù)勾股定理得:AC2=AM2+CM2,即9=AM2+2,
解得:AM=,
AE=2AM=
故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,學校準備在教學樓后面搭建一簡易矩形自行車車棚,一邊利用教學樓的后墻(可利用的墻長為18m),另外三邊利用學,,F(xiàn)有總長38m的鐵欄圍成.

1)若圍成的面積為,試求出自行車車棚的長和寬;

2)能圍成面積為的自行車車棚嗎?如果能,請你給出設計方案;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校八年級將舉行班級乒乓球對抗賽,每個班必須選派出一對男女混合雙打選手參賽.八年級一班準備在小娟、小敏、小華三名女選手和小明、小強兩名男選手中,選男、女選手各一名組成一對選手參賽,一共能夠組成哪幾對?如果小敏和小強的組合是最強組合,那么采用隨機抽簽的辦法,恰好選出小敏和小強參賽的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】10分)水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.

1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);

2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C是⊙O上一點,過點C的直線交AB的延長線于點DAE⊥DC,垂足為E,FAE與⊙O的交點,AC平分∠BAE,連接OC

(1)求證:DE是⊙O的切線;

(2)若⊙O半徑為4,∠D=30°,求圖中陰影部分的面積(結果用含π和根號的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程x-mx+2m-1=0的兩個實數(shù)根的平方和為7,那么m的值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市茶葉專賣店銷售某品牌茶葉,其進價為每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后來經(jīng)過市場調查發(fā)現(xiàn),單價每降低 10 元,則平均每周的銷售量可增加 40 千克,若該專賣店銷售這種品牌茶葉要想平均每周獲利 41600 元,請回答:

1)每千克茶葉應降價多少元?

2)在平均每周獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應按原售價的 幾折出售?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知在△ABC中,∠B=90°,AB=6cm,BC=12cm,點Q從點A開始沿AB邊向點B1cm/s的速度移動,點P從點B開始沿BC邊向點C2cm/s的速度移動.

(1)如果Q、P分別從A、B兩點出發(fā),那么幾秒后,△PBQ的面積等于8cm2

(2)在(1)中,△PBQ的面積能否等于10cm2?試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用適當?shù)姆椒ń夥匠蹋?/span>

(1)  

(2) - 2x5

(3) x 2 -4x+20

(4)

查看答案和解析>>

同步練習冊答案