【題目】用適當(dāng)?shù)姆椒ń夥匠蹋?/span>

(1)  

(2) - 2x5

(3) x 2 -4x+20

(4)

【答案】1x1=6,x2=0;(2x1=1+,x2=1;(3x1=2+,x2=2;(4x1=3,x2=.

【解析】

1)可以變形為:(x-32=9,直接開方求解.

2)兩邊加上一次項(xiàng)系數(shù)一半的平方,開方即可求出解;

3)常數(shù)項(xiàng)移到右邊,兩邊加上一次項(xiàng)系數(shù)一半的平方,開方即可求出解;

4)移項(xiàng),方程左邊分解因式后,利用兩數(shù)相乘積為0,兩因式中至少有一個(gè)為0轉(zhuǎn)化為兩個(gè)一元一次方程來(lái)求解.

(1)(x3)29=0;

(x3)2=9

x3=±3,

x1=6,x2=0

(2)x22x=5;

x22x+1=5+1,

(x1)2=6

x1=±,

x1=1+,x2=1

(3)x24x+2=0;

x24x=2

x24x+4=2+4,

(x2)2=2,

x2=±,

x1=2+,x2=2;

(4)2(x3)=3x(x3)

2(x3)3x(x3)=0

(x3)(23x)=0,

x3=023x=0,

x1=3,x2=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,∠C=Rt∠,AC=3,BC=4,以點(diǎn)C為圓心,CA為半徑的圓與AB、BC分別交于點(diǎn)E、D,則AE的長(zhǎng)為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=(x+2)2+m的圖象與y軸交于點(diǎn)C,點(diǎn)B在拋物線上,且與點(diǎn)C關(guān)于拋物線的對(duì)稱軸對(duì)稱,已知一次函數(shù)y=kx+b的圖象經(jīng)過(guò)該二次函數(shù)圖象上的點(diǎn)A(﹣1,0)及點(diǎn)B.

(1)求二次函數(shù)與一次函數(shù)的解析式;

(2)根據(jù)圖象,寫出滿足(x+2)2+m≥kx+b的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中, 對(duì)角線AC、BD相交于點(diǎn)O. EF是對(duì)角線AC上的兩個(gè)不同點(diǎn),當(dāng)E、F兩點(diǎn)滿足下列條件時(shí),四邊形DEBF不一定是平行四邊形( ).

A.AECFB.DEBFC.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,DE分別是AB、AC的中點(diǎn),BE2DE,延長(zhǎng)DE到點(diǎn)F,使得EFBE,連接CF

1)求證:四邊形BCFE是菱形;

2)若CE2,∠BCF120°,求菱形BCFE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)y=ax+b與反比例函數(shù),其中ab0a、b為常數(shù),它們?cè)谕蛔鴺?biāo)系中的圖象可以是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程有兩個(gè)正整數(shù)根是正整數(shù)的三邊a、b、c滿足,,

求:的值;

的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,用同樣規(guī)格黑白兩色的正方形瓷磚鋪設(shè)長(zhǎng)方形地面,請(qǐng)觀察下列圖形,并解答有關(guān)問(wèn)題:

1)在第n個(gè)圖中,第一橫行共    塊瓷磚,第一豎列共有    塊瓷磚;(均用含n的代數(shù)式表示)鋪設(shè)地面所用瓷磚的總塊數(shù)為   (用含n的代數(shù)式表示,n表示第n個(gè)圖形)

2)上述鋪設(shè)方案,鋪一塊這樣的長(zhǎng)方形地面共用了506塊瓷磚,求此時(shí)n的值;

3)是否存在黑瓷磚與白瓷磚塊數(shù)相等的情形?請(qǐng)通過(guò)計(jì)算加以說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在正方形ABCD中,點(diǎn)E、F分別在BCCD上,AE = AF

1)求證:BE = DF;

2)連接ACEF于點(diǎn)O,延長(zhǎng)OC至點(diǎn)M,使OM = OA,連接EM、FM.判斷四邊形AEMF是什么特殊四邊形?并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案