【題目】如圖,在ABCD中,對角線AC,BD相交于點O,E,F(xiàn)是對角線AC上的兩點,當E,F(xiàn)滿足下列哪個條件時,四邊形DEBF不一定是平行四邊形(  )

A. AE=CF B. DE=BF C. ∠ADE=∠CBF D. ∠AED=∠CFB

【答案】B

【解析】A選項:∵在平行四邊形ABCD中,OA=OC,OB=OD,
AE=CF,則OE=OF,
∴四邊形DEBF是平行四邊形;
B選項:若DEAC不垂直,則滿足AC上一定有一點DM=DE,同理有一點N使BF=BN,則四邊形DEBF不一定是平行四邊形,則選項錯誤;
C選項:∵在平行四邊形ABCD中,OB=OD,AD∥BC,
∴∠ADB=∠CBD,
若∠ADE=∠CBF,則∠DEB=∠FBO,
則△DOE和△BOF中,

∴△DOE≌△BOF,
∴DE=BF,
又∵DE∥BF,
∴四邊形DEBF是平行四邊形.故選項正確;
D選項:∵∠AED=∠CFB,
∴∠DEO=∠BFO,
∴DE∥BF,
在△DOE和△BOF中,

∴△DOE≌△BOF,
∴DE=BF,
∴四邊形DEBF是平行四邊形.故選項正確.
故選B.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】來自中國、美國、立陶宛、加拿大的四國青年男籃巔峰爭霸賽于2014325-27日在我縣體育館舉行。小明來到體育館看球賽,進場時,發(fā)現(xiàn)門票還在家里,此時離比賽開始還有25分鐘,于是立即步行回家取票.同時,他父親從家里出發(fā)騎自行車以他3倍的速度給他送票,兩人在途中相遇,相遇后小明立即坐父親的自行車趕回體育館.如圖中線段AB、OB分別表示父、子倆送票、取票過程中,離體育館的路程S(米)與所用時間t(分鐘)之間的圖象,結(jié)合圖象解答下列問題(假設(shè)騎自行車和步行的速度始終保持不變):

(1)從圖中可知,小明家離體育館 米,父子倆在出發(fā)后 分鐘相遇.

(2)求出父親與小明相遇時距離體育館還有多遠?

(3)小明能否在比賽開始之前趕回體育館?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】方程的解為 的解為 的解為;……根據(jù)發(fā)現(xiàn)的規(guī)律:

(1)請寫出第7個方程:___________,它的解為x1=____________ , x2=____________.

(2)請寫出第(n-1)個方程:____________,它的解為x1=____________, x2=____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD為∠CAF的角平分線,BD=CD,∠DBC=∠DCB,∠DCA=∠ABD,過DDE⊥ACE,DF⊥ABBA的延長線于F,則下列結(jié)論:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正確的結(jié)論有( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是同一時刻學校里一棵樹和旗桿的影子,如果樹高為3米,測得它的影子長為1.2米,旗桿的高度為5米,則它的影子長為(

A.4米
B.2米
C.1.8米
D.3.6米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形ABCD的邊長為2,E為BC邊的延長線上一點,CE=2,聯(lián)結(jié)AE,與CD交于點F,聯(lián)結(jié)BF并延長與線段DE交于點G,則BG的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,對角線AC,BD相交于點O,E是CD中點,連結(jié)OE.過點C作CF∥BD交線段OE的延長線于點F,連結(jié)DF.求證:

(1)△ODE≌△FCE;
(2)四邊形ODFC是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=8,AD=12,過點A,D兩點的⊙O與BC邊相切于點E,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知⊙P的半徑為2,圓心P在拋物線y=x2﹣1上運動,當⊙P與x軸相切時,圓心P的坐標為

查看答案和解析>>

同步練習冊答案