【題目】如圖是同一時(shí)刻學(xué)校里一棵樹和旗桿的影子,如果樹高為3米,測得它的影子長為1.2米,旗桿的高度為5米,則它的影子長為( )
A.4米
B.2米
C.1.8米
D.3.6米
【答案】B
【解析】解:設(shè)旗桿的影長為x米,
根據(jù)在同一時(shí)刻同一地點(diǎn)任何物體的高與其影子長的比值相同得: ,
解得:x=2.
故選:B.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用相似三角形的應(yīng)用和平行投影的相關(guān)知識(shí)可以得到問題的答案,需要掌握測高:測量不能到達(dá)頂部的物體的高度,通常用“在同一時(shí)刻物高與影長成比例”的原理解決;測距:測量不能到達(dá)兩點(diǎn)間的舉例,常構(gòu)造相似三角形求解;太陽光線可以看成是平行光線,平行光線所形成的投影稱為平行投影;作物體的平行投影:由于平行投影的光線是平行的,而物體的頂端與影子的頂端確定的直線就是光線,故根據(jù)另一物體的頂端可作出其影子.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某賓館客房部有60個(gè)房間供游客居住,當(dāng)每個(gè)房間的定價(jià)為每天200元時(shí),所有房間剛好可以住滿,根據(jù)經(jīng)驗(yàn)發(fā)現(xiàn),每個(gè)房間的定價(jià)每增加10元,就會(huì)有1個(gè)房間空閑,對有游客入住的房間,賓館需對每個(gè)房間支出每天20元的各種費(fèi)用.設(shè)每個(gè)房間的定價(jià)增加x元,每天的入住量為y個(gè),客房部每天的利潤為w元.
(1)求y與x的函數(shù)關(guān)系式;
(2)求w與x的函數(shù)關(guān)系式,并求客房部每天的最大利潤是多少?
(3)當(dāng)x為何值時(shí),客房部每天的利潤不低于14000元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,對角線AC,BD相交于點(diǎn)O,過點(diǎn)O與AD上的一點(diǎn)E作直線OE,交BA的延長線于點(diǎn)F.若AD=4,DC=3,AF=2,則AE的長是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,BE=3cm,AD=9cm.
求:(1)DE的長;
(2)若CE在△ABC的外部(如圖),其它條件不變,DE的長是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,BC=AC,∠ACB=90°,點(diǎn)D為射線AB上一點(diǎn),連接CD,過點(diǎn)C作線段CD的垂線l,在直線l上,分別在點(diǎn)C的兩側(cè)截取與線段CD相等的線段CE和CF,連接AE、BF.
(1)當(dāng)點(diǎn)D在線段AB上時(shí)(點(diǎn)D不與點(diǎn)A、B重合),如圖1
①請你將圖形補(bǔ)充完整;
②線段BF、AD所在直線的位置關(guān)系為 ,線段BF、AD的數(shù)量關(guān)系為 ;
(2)當(dāng)點(diǎn)D在線段AB的延長線上時(shí),如圖2
①請你將圖形補(bǔ)充完整;
②在(1)中②問的結(jié)論是否仍然成立?如果成立請進(jìn)行證明,如果不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,對角線AC,BD相交于點(diǎn)O,E,F(xiàn)是對角線AC上的兩點(diǎn),當(dāng)E,F(xiàn)滿足下列哪個(gè)條件時(shí),四邊形DEBF不一定是平行四邊形( )
A. AE=CF B. DE=BF C. ∠ADE=∠CBF D. ∠AED=∠CFB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)的圖象與x、y軸交于點(diǎn)A(1,0),B(0,﹣1)與反比例函數(shù)y= 在第一象限內(nèi)的圖象交于點(diǎn)C,點(diǎn)C的縱坐標(biāo)為1.
(1)求一次函數(shù)的解析式;
(2)求點(diǎn)C的坐標(biāo)及反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一架長2.5m的梯子AB斜靠在墻AC上,∠C=90°,此時(shí),梯子的底端B離墻底C的距離BC為0.7m.
(1)求此時(shí)梯子的頂端A距地面的高度AC;
(2)如果梯子的頂端A下滑了0.9m,那么梯子的頂端B在水平方向上向右滑動(dòng)了多遠(yuǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,點(diǎn)D是AB邊上一點(diǎn)(不與AB重合),AD=kBD,過點(diǎn)D作∠EDF+∠C=180°,與CA、CB分別交于E、F.
(1)如圖1,當(dāng)DE=DF時(shí),求的值.
(2)如圖2,若∠ACB=90°,∠B=30°,DE=m,求DF的長(用含k,m的式子表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com