【題目】國(guó)慶期間,某風(fēng)景區(qū)推出兩種旅游觀光活動(dòng)付費(fèi)方式:若人數(shù)不超過(guò)20人,人均繳費(fèi)500元;若人數(shù)超過(guò)20人,則每增加一位旅客,人均收費(fèi)降低10元,但是人均收費(fèi)不低于350元.現(xiàn)在某單位在國(guó)慶期間組織一批貢獻(xiàn)突出的職工到該景區(qū)旅游觀光,支付了12000元觀光費(fèi),請(qǐng)問(wèn):該單位一共組織了多少位職工參加旅游觀光活動(dòng)?

【答案】30

【解析】

設(shè)該單位一共組織了x位職工參加旅游觀光活動(dòng),求出當(dāng)人數(shù)為20時(shí)的總費(fèi)用及人均收費(fèi)350元時(shí)的人數(shù),即可得出20x35,再利用總費(fèi)用=人數(shù)×人均收費(fèi),即可得出關(guān)于x的一元二次方程,解之取其較小值即可得出結(jié)論.

解:設(shè)該單位一共組織了x位職工參加旅游觀光活動(dòng),

500×2010000(元),1000012000,(500350)=15(人),12000÷35034(人),34不為整數(shù),

20x20+15,即20x35

依題意,得:x[50010x20]12000

整理,得:x270x+12000,

解得:x130x240(不合題意,舍去).

答:該單位一共組織了30位職工參加旅游觀光活動(dòng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,點(diǎn)DAB邊上,CDOB交于點(diǎn)E,∠ACD=∠OBC;

1)如圖1,求證:CDAB

2)如圖2,當(dāng)∠BAC=∠OBC+BCD時(shí),求證:BO平分∠ABC;

3)如圖3,在(2)的條件下,作OFBC于點(diǎn)F,交CD于點(diǎn)G,作OHCD于點(diǎn)H,連接FH并延長(zhǎng),交OB于點(diǎn)P,交AB邊于點(diǎn)M.若OF3,MH5,求AC邊的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從三角形(不是等腰三角形)一個(gè)頂點(diǎn)引出一條射線 與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原三角形相似,我們把這條線段叫做這個(gè)三角形的完美分割線.

如圖1,在中,的完美分割線,且, 的度數(shù)是

如圖2,在中,為角平分線,,求證: 的完美分割線.

如圖2中,的完美分割線,且是以為底邊的等腰三角形,求完美分割線的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A(﹣1,0)和C0,3).(1)求拋物線的解析式;(2)在拋物線的對(duì)稱軸上,是否存在點(diǎn)P,使PA+PC的值最。咳绻嬖,請(qǐng)求出點(diǎn)P的坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由;(3)設(shè)點(diǎn)M在拋物線的對(duì)稱軸上,當(dāng)△MAC是直角三角形時(shí),求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+cx軸交于A、D兩點(diǎn),與y軸交于點(diǎn)B,四邊形OBCD是矩形,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)B的坐標(biāo)為(0,4),已知點(diǎn)Em0)是線段DO上的動(dòng)點(diǎn),過(guò)點(diǎn)EPEx軸交拋物線于點(diǎn)P,交BC于點(diǎn)G,交BD于點(diǎn)H

1)求該拋物線的解析式;

2)當(dāng)點(diǎn)P在直線BC上方時(shí),請(qǐng)用含m的代數(shù)式表示PG的長(zhǎng)度;

3)在(2)的條件下,是否存在這樣的點(diǎn)P,使得以P、BG為頂點(diǎn)的三角形與△DEH相似?若存在,求出此時(shí)m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,分別沿長(zhǎng)方形紙片ABCD和正方形紙片EFGH的對(duì)角線AC,EG剪開(kāi),拼成如圖2所示的ALMN,若中間空白部分四邊形OPQR恰好是正方形,且ALMN的面積為50,則正方形EFGH的面積為( 。

A. 24 B. 25 C. 26 D. 27

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形紙片ABCD(AD>DC)的一角沿著過(guò)點(diǎn)D的直線折疊,使點(diǎn)ABC邊上的點(diǎn)E重合,折痕交AB于點(diǎn)F.BE:EC=m:n,則AF:FB=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ABDC,BCAD,∠D90°,ACBCAB10cm,BC6cm,F點(diǎn)以2cm/秒的速度在線段AB上由AB勻速運(yùn)動(dòng),E點(diǎn)同時(shí)以1cm/秒的速度在線段BC上由BC勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(0t5).

1)求證:△ACD∽△BAC

2)求DC的長(zhǎng);

3)試探究:△BEF可以為等腰三角形嗎?若能,求t的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(

A.若某種游戲活動(dòng)的中獎(jiǎng)率是,則參加這種活動(dòng)10次必有3次中獎(jiǎng)

B.可能性很大的事件在一次試驗(yàn)中必然會(huì)發(fā)生

C.相等的圓心角所對(duì)的弧相等是隨機(jī)事件

D.擲一枚圖釘,落地后釘尖朝上朝下的可能性相等

查看答案和解析>>

同步練習(xí)冊(cè)答案