【題目】如圖1,直線與相交于,兩點(diǎn),是的直徑,是上一點(diǎn),于點(diǎn),連結(jié),且平分.
(1)求證:是的切線;
(2)若,,求的半徑;
(3)如圖2,在(2)的條件下,點(diǎn)為上一動(dòng)點(diǎn),連接,,,問(wèn):線段,,之間存在什么數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.
【答案】(1)證明見(jiàn)解析;(2)的半徑為;(3).
【解析】
(1)由OA=OD得∠OAD=∠ODA,由AD平分∠CAM得∠OAD=∠DAE,則∠ODA=∠DAE,所以DO∥AB,利用DE⊥AB得到DE⊥OD,然后根據(jù)切線的判定定理即可得到結(jié)論;
(2)連結(jié)DC,先利用勾股定理計(jì)算出AD長(zhǎng),由AC是⊙O直徑得到∠ADC=90°,易證得△ACD∽△ADE,利用相似比可計(jì)算出AC,即可得到圓的半徑;
(3)可得結(jié)論PC=PD+PB,連接PB、DB,在CP上截取PB=PF,連接BF、BC,可證△PBF為等邊三角形,再證△PBD≌△FBC,即可得結(jié)論.
解:(1)連結(jié),如圖,
∵,
∴,
∵平分,
∴,
∴.
∴,
∵,
∴,
∴是的切線;
(2)∵,,.
∴,
連結(jié),
∵是的直徑,
∴,
∵,
∴,
又∵,
∴,
∴,
∴,
解得.
∴的半徑為.
(3).
理由:連接、,延長(zhǎng)至點(diǎn),使,
∵,
∴,
∴,
∴,
∴,
∵四邊形內(nèi)接于,
∴,
∴,
∴,
∵,
∴為等邊三角形,
∴,
∵,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,AB=AC=20,tanB=,點(diǎn)D為BC邊上的動(dòng)點(diǎn)(D不與點(diǎn)B,C重合).以D為頂點(diǎn)作∠ADE=∠B,射線DE交AC邊于點(diǎn)E,過(guò)點(diǎn)A作AF⊥AD交射線DE于點(diǎn)F,連接CF.
(1)求證:△ABD∽△DCE;
(2)當(dāng)DE∥AB時(shí)(如圖2),求AE的長(zhǎng);
(3)點(diǎn)D在BC邊上運(yùn)動(dòng)的過(guò)程中,是否存在某個(gè)位置,使得DF=CF?若存在,求出此時(shí)BD的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y=與一次函數(shù)y=ax+b的圖象交于點(diǎn)A(2,2),B(,n).
(1)求這兩個(gè)函數(shù)的解析式;
(2)將一次函數(shù)y=ax+b的圖象沿y軸向下平移m個(gè)單位,使平移后的圖象與反比例函數(shù)y=的圖象有且只有一個(gè)交點(diǎn),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:拋物線交x軸于A,B兩點(diǎn),交y軸于點(diǎn)C,其中點(diǎn)B在點(diǎn)A的右側(cè),且AB=7.
(1)如圖1,求拋物線的解析式;
(2)如圖2,點(diǎn)D在第一象限內(nèi)拋物線上,連接CD,AD,AD交y軸于點(diǎn)E.設(shè)點(diǎn)D的橫坐標(biāo)為d,△CDE的面積為S,求S與d之間的函數(shù)關(guān)系式(不要求寫(xiě)出自變量d的取值范圍);
(3)如圖3,在(2)的條件下,過(guò)點(diǎn)D作DH⊥CE于點(diǎn)H,點(diǎn)P在DH上,連接CP,若∠OCP=2∠DAB,且HE:CP=3:5,求點(diǎn)D的坐標(biāo)及相應(yīng)S的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與軸交于點(diǎn),與反比例函數(shù)第一象限內(nèi)的圖象交于點(diǎn),連接,若.
(1)求直線的表達(dá)式和反比例函數(shù)的表達(dá)式;
(2)若直線與軸的交點(diǎn)為,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)與一次函數(shù)在第三象限交于點(diǎn).點(diǎn)的坐標(biāo)為(一3,0),點(diǎn)是軸左側(cè)的一點(diǎn).若以為頂點(diǎn)的四邊形為平行四邊形.則點(diǎn)的坐標(biāo)為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)為了吸引顧客,設(shè)計(jì)了一種促銷(xiāo)活動(dòng):在一個(gè)不透明的箱子里放有4個(gè)相同的小球,球上分別標(biāo)有“0元”、“10元”、“20元”和“30元”的字樣.規(guī)定:顧客在本商場(chǎng)同一日內(nèi),每消費(fèi)滿200元,就可以在箱子里先后摸出兩個(gè)球(第一次摸出后不放回),商場(chǎng)根據(jù)兩小球所標(biāo)金額的和返還相應(yīng)價(jià)格的購(gòu)物券,可以重新在本商場(chǎng)消費(fèi),某顧客剛好消費(fèi)200元.
(1)該顧客至少可得到_____元購(gòu)物券,至多可得到_______元購(gòu)物券;
(2)請(qǐng)你用畫(huà)樹(shù)狀圖或列表的方法,求出該顧客所獲得購(gòu)物券的金額不低于30元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著經(jīng)濟(jì)的快速發(fā)展,環(huán)境問(wèn)題越來(lái)越受到人們的關(guān)注.某校學(xué)生會(huì)為了了解垃圾分類(lèi)知識(shí)的普及情況,隨機(jī)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為“非常了解”“了解”“了解較少”“不了解”四類(lèi),并將調(diào)查結(jié)果繪制成下面兩幅統(tǒng)計(jì)圖.
(1)求:本次被調(diào)查的學(xué)生有多少名?補(bǔ)全條形統(tǒng)計(jì)圖.
(2)估計(jì)該校1200名學(xué)生中“非常了解”與“了解”的人數(shù)和是多少.
(3)被調(diào)查的“非常了解”的學(xué)生中有2名男生,其余為女生,從中隨機(jī)抽取2人在全校做垃圾分類(lèi)知識(shí)交流,請(qǐng)利用畫(huà)樹(shù)狀圖或列表的方法,求恰好抽到一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線y=kx+2k(k>0)與x軸交于點(diǎn)P,與雙曲線(x>0)交于點(diǎn)Q,若直線y=4kx-2與直線PQ交于點(diǎn)R(點(diǎn)R在點(diǎn)Q右側(cè)),當(dāng)RQ≤PQ時(shí),k的取值范圍是__.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com