【題目】已知在四邊形ABCD中,∠A=∠C=90°.
(1)∠ABC+∠ADC= °;
(2)如圖①,若DE平分∠ADC,BF平分∠ABC的外角,請(qǐng)寫出DE與BF的位置關(guān)系,并證明;
(3)如圖②,若BE,DE分別四等分∠ABC、∠ADC的外角(即∠CDE=∠CDN,∠CBE=∠CBM),試求∠E的度數(shù).
【答案】(1)180°;(2)DE⊥BF;(3)450
【解析】
(1)根據(jù)四邊形內(nèi)角和等于360°列式計(jì)算即可得解;
(2)延長DE交BF于G,根據(jù)角平分線的定義可得∠CDE=∠ADC,∠CBF=∠CBM,然后求出∠CDE=∠CBF,再利用三角形的內(nèi)角和定理求出∠BGE=∠C=90°,最后根據(jù)垂直的定義證明即可;
(3)先求出∠CDE+∠CBE,然后延長DC交BE于H,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和求解即可.
(1)解:∵∠A=∠C=90°,
∴∠ABC+∠ADC=360°-90°×2=180°;
故答案為180°;
(2)解:延長DE交BF于G,
∵DE平分∠ADC,BF平分∠CBM,
∴∠CDE=∠ADC,∠CBF=∠CBM,
又∵∠CBM=180°-∠ABC=180°-(180°-∠ADC)=∠ADC,
∴∠CDE=∠CBF,
又∵∠BED=∠CDE+∠C=∠CBF+∠BGE,
∴∠BGE=∠C=90°,
∴DG⊥BF,
即DE⊥BF;
(3)解:由(1)得:∠CDN+∠CBM=180°,
∵BE、DE分別四等分∠ABC、∠ADC的外角,
∴∠CDE+∠CBE=×180°=45°,
延長DC交BE于H,
由三角形的外角性質(zhì)得,∠BHD=∠CDE+∠E,∠BCD=∠BHD+∠CBE,
∴∠BCD=∠CBE+∠CDE+∠E,
∴∠E=90°-45°=45°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知AD,AE分別是△ADC和△ABC的高和中線,AB=6cm,AC=8cm,BC=10cm,∠CAB=90°.試求:
(1)AD的長;
(2)△ABE的面積;
(3)△ACE和△ABE的周長的差.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,E,F(xiàn)是對(duì)角線BD上的點(diǎn),∠1=∠2.
求證:(1)BE=DF;(2)AF∥CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀以下材料:對(duì)數(shù)的創(chuàng)始人是蘇格蘭數(shù)學(xué)家納皮爾(J.Napier,1550-1617年),納皮爾發(fā)明對(duì)數(shù)是在指數(shù)書寫方式之前,直到世紀(jì)瑞士數(shù)學(xué)家歐拉(L.Euler,1707-1783年)才發(fā)現(xiàn)指數(shù)與對(duì)數(shù)之間的聯(lián)系.對(duì)數(shù)的定義:一般地,若,那么叫做以為底的對(duì)數(shù),記作:.比如指數(shù)式可以轉(zhuǎn)化為,對(duì)數(shù)式可以轉(zhuǎn)化為.我們根據(jù)對(duì)數(shù)的定義可得到對(duì)數(shù)的一個(gè)性質(zhì):(,,,);理由如下:設(shè)M=m,,則, ,由對(duì)數(shù)的定義得又+ .解決一下問題:
(1)將指數(shù)式轉(zhuǎn)化為對(duì)數(shù)式___________;
(2)證明(,,,);
(3)拓展運(yùn)用:計(jì)算=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在方格紙內(nèi)將△ABC水平向右平移4個(gè)單位得到△A′B′C′.
(1)補(bǔ)全△A′B′C′,利用網(wǎng)格點(diǎn)和直尺畫圖;
(2)圖中AC與A1C1的關(guān)系是:______;
(3)畫出△ABC中AB邊上的中線CE;
(4)平移過程中,線段AC掃過的面積是_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(﹣4,n),B(4﹣n,﹣4)是直線y=kx+b和雙曲線y=的兩個(gè)交點(diǎn).
(1)求兩個(gè)函數(shù)的表達(dá)式;
(2)觀察圖象,直接寫出不等式kx+b﹣≥0的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個(gè)結(jié)論:
①abc>0;②b<a+c;③4a﹣2b+c>0;④2c<3b;⑤當(dāng)m≤x≤m+1時(shí),函數(shù)的最大值為a+b+c,則0≤m≤1;
其中正確的結(jié)論有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】供電局的電力維修工要到30千米遠(yuǎn)的郊區(qū)進(jìn)行電力搶修.技術(shù)工人騎摩托車先走,15分鐘后,搶修車裝載著所需材料出發(fā),結(jié)果他們同時(shí)到達(dá).已知搶修車的速度是摩托車的1.5倍,求這兩種車的速度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,.點(diǎn)在上,點(diǎn)在的延長線上,連接FD并延長交BC于點(diǎn)E,若∠BED=2∠ADC,AF=2,DF=7,則的面積為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com