【題目】如圖1,在正方形ABCD中,P是對角線BD上的一點(diǎn),點(diǎn)E在AD的延長線上,且PA=PE,PE交CD于F.
(1)PC=PE;
(2)求∠CPE的度數(shù);
(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當(dāng)∠ABC=120°時(shí),連接CE,試探究線段AP與線段CE的數(shù)量關(guān)系,并說明理由.
【答案】(1)證明見試題解析;(2)90°;(3)AP=CE.
【解析】
試題分析:(1)先證出△ABP≌△CBP,得到PA=PC,由PA=PE,得到PC=PE;
(2)由△ABP≌△CBP,得到∠BAP=∠BCP,進(jìn)而得到∠DAP=∠DCP,由PA=PC,得到∠DAP=∠E,∠DCP=∠E,最后∠CPF=∠EDF=90°得到結(jié)論;
(3)借助(1)和(2)的證明方法容易證明結(jié)論.
試題解析:(1)在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,∵AB=BC,∠ABP=∠CBP,PB=PB,∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;
(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PC,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(對頂角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;
(3)在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,∵AB=BC,∠ABP=∠CBP,PB=PB,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(對頂角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等邊三角形,∴PC=CE,∴AP=CE.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DE是△ABC的中位線,延長DE到F,使EF=DE,連接BF
(1)求證:BF=DC;
(2)求證:四邊形ABFD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P(6,3)關(guān)于原點(diǎn)的對稱P1點(diǎn)的坐標(biāo)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,我們在2016年1月的日歷中標(biāo)出一個(gè)十字星,并計(jì)算它的“十字差”(將十字星左右兩數(shù),上下兩數(shù)分別相乘再將所得的積作差,稱為該十字星的“十字差”).該十字星的十字差為12×14﹣6×20=48,再選擇其它位置的十字星,可以發(fā)現(xiàn)“十字差”仍為48.
(1)如圖2,將正整數(shù)依次填入5列的長方形數(shù)表中,探究不同位置十字星的“十字差”,可以發(fā)現(xiàn)相應(yīng)的“十字差”也是一個(gè)定值,則這個(gè)定值為 .
(2)若將正整數(shù)依次填入k列的長方形數(shù)表中(k≥3),繼續(xù)前面的探究,可以發(fā)現(xiàn)相應(yīng)“十字差”為與列數(shù)k有關(guān)的定值,請用k表示出這個(gè)定值,并證明你的結(jié)論.
(3)如圖3,將正整數(shù)依次填入三角形的數(shù)表中,探究不同十字星的“十字差”,若某個(gè)十字星中心的數(shù)在第32行,且其相應(yīng)的“十字差”為2015,則這個(gè)十字星中心的數(shù)為(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠BAC=90°,AB=AC點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B、C重合) .以AD為邊作正方形ADEF,連接CF.
(1)如圖①,當(dāng)點(diǎn)D在線段BC上時(shí),求證:①BD⊥CF;②CF=BCCD.
(2)如圖②,當(dāng)點(diǎn)D在線段BC的延長線上時(shí),其他條件不變,請直接寫出CF、BC、CD三條線段之間的關(guān)系.
(3)如圖③,當(dāng)點(diǎn)D在線段BC的反向延長線上時(shí),且點(diǎn)A、F分別在直線BC的兩側(cè),其他條件不變:①請直接寫出CF、BC、CD三條線段之間的關(guān)系;②若連接正方形對角線AE、DF,交點(diǎn)為O,連接OC,探究△AOC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖四邊形AOBC為正方形,點(diǎn)C的坐標(biāo)為(4 ,0),動(dòng)點(diǎn)P沿著折線OACB的方向以1個(gè)單位每秒的速度勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q沿著折線OBCA的方向勻速運(yùn)動(dòng),速度是2個(gè)單位長度每秒,運(yùn)動(dòng)時(shí)間為t秒,當(dāng)他們相遇時(shí)同時(shí)停止運(yùn)動(dòng).
(1)點(diǎn)A的坐標(biāo)是正方形AOBC的面積是 .
(2)將正方形繞點(diǎn)O順時(shí)針旋轉(zhuǎn)45°,求旋轉(zhuǎn)后的正方形與原正方形的重疊部分的面積.
(3)運(yùn)動(dòng)時(shí)間t為多少秒時(shí),以A、P、B、Q四點(diǎn)為頂點(diǎn)的四邊形為平行四邊形?
(4)是否存在這樣的t值,使△OPQ成為等腰三角形?若存在,請求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題是真命題的是( )
A.兩邊及其中一邊的對角分別相等的兩個(gè)三角形全等
B.平分弦的直徑垂直于弦
C.一組對邊平行且一組對角相等的四邊形是平行四邊形
D.兩條直線被第三條直線所截,同位角相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠A=180°﹣∠ABC,BD⊥CD于D,EF⊥CD于F.
(1)求證:AD∥BC;
(2)若∠1=42°,求∠2的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,三角形ABC(記作△ABC)在方格中,方格紙中的每個(gè)小方格都是邊長為1個(gè)單位的正方形,三個(gè)頂點(diǎn)的坐標(biāo)分別是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先將△ABC向上平移3個(gè)單位長度,再向右平移2個(gè)單位長度,得到A1B1C1 .
(1)在圖中畫出△A1B1C1;
(2)點(diǎn)A1 , B1 , C1的坐標(biāo)分別為、、;
(3)若y軸有一點(diǎn)P,使△PBC與△ABC面積相等,求出P點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com