【題目】如圖所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,動點P從點A出發(fā)沿AD方向向點D以1cm/s的速度運動,動點Q從點C開始沿著CB方向向點B以3cm/s的速度運動.點P、Q分別從點A和點C同時出發(fā),當(dāng)其中一點到達端點時,另一點隨之停止運動.
(1)經(jīng)過多長時間,四邊形PQCD是平行四邊形?
(2)經(jīng)過多長時間,四邊形PQBA是矩形?
(3)經(jīng)過多長時間,當(dāng)PQ不平行于CD時,有PQ=CD.
【答案】(1)6s;(2) s;(3)7s.
【解析】
(1)設(shè)經(jīng)過ts時,四邊形PQCD是平行四邊形,根據(jù)DP=CQ,代入后求出即可;
(2)設(shè)經(jīng)過ts時,四邊形PQBA是矩形,根據(jù)AP=BQ,代入后求出即可;
(3)設(shè)經(jīng)過t(s),四邊形PQCD是等腰梯形,利用EP=2列出有關(guān)t的方程求解即可.
(1)設(shè)經(jīng)過t(s),四邊形PQCD為平行四邊形
即PD=CQ
所以24-t=3t,
解得:t=6.
(2)設(shè)經(jīng)過t(s),四邊形PQBA為矩形,
即AP=BQ,
所以t=26-3t,
解得:t=.
(3)設(shè)經(jīng)過t(s),四邊形PQCD是等腰梯形.
過Q點作QE⊥AD,過D點作DF⊥BC,
∴∠QEP=∠DFC=90°
∵四邊形PQCD是等腰梯形,
∴PQ=DC.
又∵AD∥BC,∠B=90°,
∴AB=QE=DF.
在Rt△EQP和Rt△FDC中,
,
∴Rt△EQP≌Rt△FDC(HL).
∴FC=EP=BC-AD=26-24=2.
又∵AE=BQ=26-3t,
∴EP=AP-AE=t-(26-3t)=2.
得:t=7.
∴經(jīng)過7s,PQ=CD.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知等邊三角形ABC和等邊三角形DBC有公共邊BC,以圖中某個點為旋轉(zhuǎn)中心,旋轉(zhuǎn)△DBC使它和△ABC重合,則旋轉(zhuǎn)中心可以是________.(寫出一個旋轉(zhuǎn)中心即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年4月23日世界讀書日這天,濱江初二年級的學(xué)生會,就2018年寒假讀課外書數(shù)量(單位:本)做了調(diào)查,他們隨機調(diào)查了甲、乙兩個班的10名同學(xué),調(diào)查過程如下
收集數(shù)據(jù)
甲、乙兩班被調(diào)查者讀課外書數(shù)量(單位:本)統(tǒng)計如下:
甲:1,9,7,4,2,3,3,2,7,2
乙:2,6,6,3,1,6,5,2,5,4
整理、描述數(shù)據(jù)繪制統(tǒng)計表如下,請補全下表:
班級 | 平均數(shù) | 眾數(shù) | 中位數(shù) | 方差 |
甲 | 4 | 3 | ||
乙 | 6 | 3.2 |
分析數(shù)據(jù)、推斷結(jié)論
(1)該校初二乙班共有40名同學(xué),你估計讀6本書的同學(xué)大概有_____人;
(2)你認(rèn)為哪個班同學(xué)寒假讀書情況更好,寫出理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】揚州市教育行政部門為了了解八年級學(xué)生每學(xué)期參加綜合實踐活動的情況,隨機調(diào)查了部分學(xué)生,并將他們一學(xué)期參加綜合實踐活動的天數(shù)進行統(tǒng)計,繪制了下面兩幅不完整的統(tǒng)計圖(如圖).請你根據(jù)圖中提供的信息,回答下列問題:
(1)參加調(diào)查的八年級學(xué)生總?cè)藬?shù)為_______人;
(2)根據(jù)圖中信息,補全條形統(tǒng)計圖;扇形統(tǒng)計圖中“活動時間為4天”的扇形所對應(yīng)的圓心角的度數(shù)為_______;
(3)如果全市共有八年級學(xué)生6000人,請你估計“活動時間不少于4天”的大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,點O是邊AC上一個動點,過點O作直線//BC,分別交,外角的平分線于點E、F.
(1)猜想與證明,試猜想線段OE與OF的數(shù)量關(guān)系,并說明理由.
(2)連接AE,AF,問:當(dāng)點O在邊AC上運動時到什么位置時,四邊形AECF是矩形?并說明理由.
(3)若AC邊上存在一點O,使四邊形AECF是正方形,猜想的形狀并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對任意一個三位數(shù)n,如果n滿足各數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個數(shù)為“相異數(shù)”.將一個“相異數(shù)”任意兩個數(shù)位上的數(shù)字對調(diào)后可以得到三個不同的新三位數(shù),把這三個新三位數(shù)的和與111的商記為F(n).例如n=123,對調(diào)百位與十位上的數(shù)字得到213,對調(diào)百位與個位上的數(shù)字得到321,對調(diào)十位與個位上的數(shù)字得到132,這三個新三位數(shù)的和為213+321+132=666,666÷111=6,所以F(123)=6.
(1)計算:F(243),F(xiàn)(617);
(2)若s,t都是“相異數(shù)”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整數(shù)),規(guī)定:k= ,當(dāng)F(s)+F(t)=18時,求k的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①(﹣2)101+(﹣2)100=﹣2100;②20172+2017一定可以被2018整除;③16.9× +15.1×能被4整除;④兩個連續(xù)奇數(shù)的平方差是8的倍數(shù).其中說法正確的個數(shù)是( 。
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在圖1中,A1,B1,C1分別是△ABC的邊BC,CA,AB的中點,在圖2中,A2,B2,C2分別是△A1B1C1的邊B1C1,C1A1,A1B1的中點,…,按此規(guī)律,則第n個圖形中平行四邊形的個數(shù)共有___個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A,B的坐標(biāo)分別為(﹣1,0),(3,0),現(xiàn)同時將點A,B分別向上平移2個單位,再向右平移1個單位,分別得到點A,.B 的對應(yīng)點C,D,連接AC,BD,CD.
(1)求點C,D的坐標(biāo)及四邊形ABDC的面積S四邊形ABDC;
(2) 在y軸上是否存在一點P,連接PA,PB,使S三角形PAB=S四邊形ABDC?若存在這樣一點,求出點P的坐標(biāo);若不存在,試說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com