【題目】如圖,已知⊙半徑為,從⊙外點作⊙的切線和,切點分別為點和點,,則圖中陰影部分的面積是__________.
【答案】
【解析】
連接OD、OE,證明四邊形ACDO是正方形 ,得出AC=OA=2,再求出∠ABC=30°,則∠OAB=∠ABC=30°,得出扇形OAE的圓心角為120°,作△AOE的高OF,求出OF與AE的長,利用面積公式即可求出陰影部分的面積.
連接OD、OE,
∵AC、BC是⊙的切線,
∴OA⊥AC,OD⊥BC,AC=CD,
∴∠CAO=∠CDO=90°,
∴四邊形ACDO是正方形
在Rt△ACB中,∵AC=OA=2,BC=,
∴AB=
∴∠ABC=30°,
∵AO∥BC,
∴∠OAB=∠ABC=30°,
∵OA=OE,
∴∠OAE=∠OEA=30°,
∴∠AOE=120°,
過O作OF⊥AB于F,
∴OF=
∴AF=,
∴AE=2,
S弓形ADE=S扇形OAE-S△AOE=
∴S陰影=S△ACB- S弓形ADE=-()=
科目:初中數(shù)學 來源: 題型:
【題目】已知矩形中,米,米,為中點,動點以2米/秒的速度從出發(fā),沿著的邊,按照AEDA順序環(huán)行一周,設從出發(fā)經(jīng)過秒后,的面積為(平方米),求與間的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線PA交⊙O于A、B兩點,AE是⊙O的直徑,點C為⊙O上一點,且AC平分∠PAE,過C作CD⊥PA,垂足為D.
(1)求證:CD為⊙O的切線;
(2)若DC+DA=6,⊙O的直徑為10,求AB的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點D,E分別在AB,BC上,∠EAD=∠EDA,點F為DE的延長線與AC的延長線的交點.
(1)求證:DE=EF;
(2)判斷BD和CF的數(shù)量關系,并說明理由;
(3)若AB=3,AE=,求BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形ABCD中,AB=4,BC=3,點E為AB的中點,將矩形ABCD沿CE折疊,使得點B落到點F的位置.
(1)求證:AF∥CE.
(2)求AF的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知長方形中,,點在邊上,由往運動,速度為,運動時間為秒,將沿著翻折至,點對應點為,所在直線與邊交與點,
(1)如圖,當時,求證:;
(2)如圖,當為何值時,點恰好落在邊上;
(3)如圖,當時,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ΔABC中,AB=AC,點E,F在邊BC上,BE=CF,點D在AF的延長線上,AD=AC.
(1)求證:ΔABE≌ΔACF;
(2)若∠BAE=30°,則∠ADC= (直接寫答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=﹣x2+bx+c經(jīng)過點A、B、C,已知A(﹣1,0),C(0,3).
(1)求拋物線的解析式;
(2)如圖1,P為線段BC上一點,過點P作y軸平行線,交拋物線于點D,當△BDC的面積最大時,求點P的坐標;
(3)如圖2,拋物線頂點為E,EF⊥x軸于F點,M(m,0)是x軸上一動點,N是線段EF上一點,若∠MNC=90°,請指出實數(shù)m的變化范圍,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax+bx+4(a≠0)過點A(1, ﹣1),B(5, ﹣1),與y軸交于點C.
(1)求拋物線表達式;
(2)如圖1,連接CB,以CB為邊作CBPQ,若點P在直線BC下方的拋物線上,Q為坐標平面內(nèi)的一點,且CBPQ的面積為30,
①求點P坐標;
②過此二點的直線交y軸于F, 此直線上一動點G,當GB+最小時,求點G坐標.
(3)如圖2,⊙O1過點A、B、C三點,AE為直徑,點M為 上的一動點(不與點A,E重合),∠MBN為直角,邊BN與ME的延長線交于N,求線段BN長度的最大值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com