【題目】拋物線(xiàn)y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A、B、C,已知A(﹣1,0),C(0,3).
(1)求拋物線(xiàn)的解析式;
(2)如圖1,P為線(xiàn)段BC上一點(diǎn),過(guò)點(diǎn)P作y軸平行線(xiàn),交拋物線(xiàn)于點(diǎn)D,當(dāng)△BDC的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)如圖2,拋物線(xiàn)頂點(diǎn)為E,EF⊥x軸于F點(diǎn),M(m,0)是x軸上一動(dòng)點(diǎn),N是線(xiàn)段EF上一點(diǎn),若∠MNC=90°,請(qǐng)指出實(shí)數(shù)m的變化范圍,并說(shuō)明理由.
【答案】(1)y=﹣x2+2x+3;(2)當(dāng)a=時(shí),△BDC的面積最大,此時(shí)P(, );(3)m的變化范圍為:﹣≤m≤5
【解析】試題分析:
解:
(1)由題意得:,解得: ,
∴拋物線(xiàn)解析式為;
(2)令,
∴x1= -1,x2=3,即B(3,0),
設(shè)直線(xiàn)BC的解析式為y=kx+b′,
∴,解得: ,
∴直線(xiàn)BC的解析式為,
設(shè)P(a,3-a),則D(a,-a2+2a+3),
∴PD=(-a2+2a+3)-(3-a)=-a2+3a,
∴S△BDC=S△PDC+S△PDB
,
∴當(dāng)時(shí),△BDC的面積最大,此時(shí)P(, );
(3)由(1),y=-x2+2x+3=-(x-1)2+4,
∴OF=1,EF=4,OC=3,
過(guò)C作CH⊥EF于H點(diǎn),則CH=EH=1,
當(dāng)M在EF左側(cè)時(shí),
∵∠MNC=90°,
則△MNF∽△NCH,
∴,
設(shè)FN=n,則NH=3-n,
∴,
即n2-3n-m+1=0,
關(guān)于n的方程有解,△=(-3)2-4(-m+1)≥0,
得m≥,
當(dāng)M在EF右側(cè)時(shí),Rt△CHE中,CH=EH=1,∠CEH=45°,即∠CEF=45°,
作EM⊥CE交x軸于點(diǎn)M,則∠FEM=45°,
∵FM=EF=4,
∴OM=5,
即N為點(diǎn)E時(shí),OM=5,
∴m≤5,
綜上,m的變化范圍為: ≤m≤5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2013年浙江義烏3分)如圖,拋物線(xiàn)y=ax2+bx+c與x軸交于點(diǎn)A(1,0),頂點(diǎn)坐標(biāo)為(1,n),與y軸的交點(diǎn)在(0,2)、(0,3)之間(包含端點(diǎn)),則下列結(jié)論:
①當(dāng)x>3時(shí),y<0;②3a+b>0;③;④3≤n≤4中,
正確的是( )
A. ①② B. ③④ C. ①④ D. ①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為發(fā)展學(xué)生的核心素養(yǎng),培養(yǎng)學(xué)生的綜合能力,某學(xué)校計(jì)劃開(kāi)設(shè)四門(mén)選修課:樂(lè)器、舞蹈、繪畫(huà)、書(shū)法.學(xué)校采取隨機(jī)抽樣的方法進(jìn)行問(wèn)卷調(diào)查(每個(gè)被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門(mén)).對(duì)調(diào)查結(jié)果進(jìn)行整理,繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給信息解答下列問(wèn)題:
(1)本次調(diào)查的學(xué)生共有 人,在扇形統(tǒng)計(jì)圖中,m的值是 ;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在被調(diào)查的學(xué)生中,選修書(shū)法的有2名女同學(xué),其余為男同學(xué),現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表學(xué)校參加某社區(qū)組織的書(shū)法活動(dòng),請(qǐng)寫(xiě)出所抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某甜品店用 A,B 兩種原料制作成甲、乙兩款甜品進(jìn)行銷(xiāo)售,制作每份甜品的原料所需用量如下表所示.該店制作甲款甜品 x 份,乙款甜品 y 份,共用去A 原料 2000 克.
原料 款式 | A 原料(克) | B 原料(克) |
甲款甜品 | 30 | 15 |
乙款甜品 | 10 | 20 |
(1)求 y 關(guān)于 x 的函數(shù)表達(dá)式.
(2)已知每份甲甜品的利潤(rùn)為 a 元(a 正整數(shù)), 每份乙甜品的利潤(rùn)為 2 元. 假設(shè)兩款甜品均能全部賣(mài)出.
①當(dāng) a=3 時(shí),若獲得總利潤(rùn)不少于 220 元,則至少要用去 B 原料多少克?
②現(xiàn)有 B 原料 3100 克,要使獲利為 450 元且盡量不浪費(fèi)原材料,甲甜品的每份利潤(rùn)應(yīng)定為多元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=4,AD=6,點(diǎn)E為AD中點(diǎn),點(diǎn)P為線(xiàn)段AB上一個(gè)動(dòng)點(diǎn),連接EP,將△APE沿PE折疊得到△FPE,連接CE,CF,當(dāng)△ECF為直角三角形時(shí),AP的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD的對(duì)角線(xiàn)AC,BD交于O,EF過(guò)點(diǎn)O與AD,BC分別交于E,F,若AB=4,BC=5,OE=1.5,則四邊形EFCD的周長(zhǎng)_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCB1中,AB=1,AB與直線(xiàn)l的夾角為30°,延長(zhǎng)CB1交直線(xiàn)l于點(diǎn)A1,作正方形A1B1C1B2,延長(zhǎng)C1B2交直線(xiàn)l于點(diǎn)A2,作正方形A2B2C2B3,延長(zhǎng)C2B3交直線(xiàn)l于點(diǎn)A3,作正方形A3B3C3B4,…,依此規(guī)律,則A2016A2017=__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=2,AC=6,在AC上取一點(diǎn)D,使AD=4,將線(xiàn)段AD繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn),點(diǎn)D的對(duì)應(yīng)點(diǎn)是點(diǎn)P,連接BP,取BP的中點(diǎn)F,連接CF,當(dāng)點(diǎn)P旋轉(zhuǎn)至CA的延長(zhǎng)線(xiàn)上時(shí),CF的長(zhǎng)是_____,在旋轉(zhuǎn)過(guò)程中,CF的最大長(zhǎng)度是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,于,將沿折疊為,將沿折疊為,延長(zhǎng)和相交于點(diǎn).
(1)求證:四邊形為正方形;
(2)若,,求的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com