【題目】觀察下列圖形:已知ab,在第一個圖中,可得∠1+2=180°,則按照以上規(guī)律,∠1+2+P1+…+Pn=______度.

【答案】n﹣1×180

【解析】如圖,

分別過P1、P2、P3作直線AB的平行線P1E,P2F,P3G,
∵AB∥CD,
∴AB∥P1E∥P2F∥P3G.
由平行線的性質可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180°
∴(1)∠1+∠2=180°,

(2)∠1+∠P1+∠2=2×180,

(3)∠1+∠P1+∠P2+∠2=3×180°,

(4)∠1+∠P1+∠P2+∠P3+∠2=4×180°,
∴∠1+∠2+∠P1+…+∠Pn=(n+1)×180°.
故答案為:(n+1)×180.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】兩個全等的三角尺重疊擺放在ACB的位置,將其中一個三角尺繞著點C按逆時針方向旋轉到DCE的位置,使點A恰好落在邊DE上,AB CE相交于點F.已知ACB=DCE=90°,B=30°,AB=16cm,則AF=____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC是等邊三角形,DAC邊上的一點,DGAB,延長ABE,使BE=GD,連接DEBCF.

(1)求證:GF=BF;

(2)ABC的邊長為a,BE的長為b,且a,b滿足(a﹣7)2+b2﹣6b+9=0,求BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知銳角三角形ABC,以點A為圓心,AC為半徑畫弧與BC交于點E,分別以點E、C為圓心,以大于 EC的長為半徑畫弧相交于點P,作射線AP,交BC于點D.若BC=5,AD=4,tan∠BAD= ,則AC的長為(
A.3
B.5
C.
D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,D在邊AC上,且

如圖1,填空______,______

如圖2,若M為線段AC上的點,過M作直線H,分別交直線ABBC與點N、E

求證:是等腰三角形;

試寫出線段AN、CECD之間的數(shù)量關系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題8分)如圖,在五邊形ABCDE中,BCD=EDC=90°,BC=ED,AC=AD

(1)求證:ABC≌△AED;

(2)當B=140°時,求BAE的度數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】任何一個正整數(shù)n都可以進行這樣的分解:np×qpq是正整數(shù),且pq).如果p×qn的所有這種分解中兩因數(shù)之差的絕對值最小,我們就稱p×qn的最佳分解,并且規(guī)定Fn)=.例如18=1×18=2×9=3×6,這時就有F(18)=.請解答下列問題:

(1)計算:F(24);

(2)n為正整數(shù)時,求證:Fn3+2n2+n)=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A(a,0),B(b,0),且+| b-6|=0.

(1)A,B的坐標;

(2)如圖2,點PAB的垂直平分線上一點,BD⊥AP于點D,BE△PBD的角平分線,EH⊥AB于點H,交BD于點G,AD=m,DE=n,△BEG的面積(用含m,n的式子表示);

(3)如圖3,點MAB的垂直平分線上,且∠MAB=40°,點NMA的延長線上,且MN=8,求∠ABN的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD=∠ADC=90°,AB=AD= ,CD= ,點P在四邊形ABCD上,若P到BD的距離為 ,則點P的個數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習冊答案