【題目】如圖,在平面直角坐標系中,點A(a,0),B(b,0),且+| b-6|=0.
(1)求A,B的坐標;
(2)如圖2,點P為AB的垂直平分線上一點,BD⊥AP于點D,BE是△PBD的角平分線,EH⊥AB于點H,交BD于點G,若AD=m,DE=n,求△BEG的面積(用含m,n的式子表示);
(3)如圖3,點M在AB的垂直平分線上,且∠MAB=40°,點N在MA的延長線上,且MN=8,求∠ABN的度數(shù).
【答案】(1)A(-2,0)B(6,0);(2);(3)∠ABN=10°.
【解析】
(1)由平方和絕對值的非負性即可求解a和b的值;
(2)∠EBH=∠EBG+∠GBH=∠PBD+90°-∠PAB=(90°-∠P)+ 90°-(180°-∠P)=45°,則EH=BH,可證明△EAH≌△BGH,則AE=GB,再利用三角形面積公式即可求解;
(3)連接MB,作∠BMN內(nèi)部作∠BMK=40°,并取MK=8,連接KB,KN,易證△NMK為等邊三角形,然后證△AMB≌△MBK,得BK=BM,由△BMN≌△BKN得∠BNM=30°,∠ABN=∠MAB-∠MNB=10°.
解:(1)由題干得,3a+b=0,b-6=0,解得,a=-2,b=6,則A(-2,0)B(6,0);
(2)由圖可知∠EBH=∠EBG+∠GBH=∠PBD+90°-∠PAB=(90°-∠P)+ 90°-(180°-∠P)=45°,由于RT△EHB,故△EHB是直角等腰三角形,則EH=BH,
∵∠AEH+∠EAH=∠GBH+∠EAH=90°,
∴∠AEH=∠GBH,
又∵∠EHA=∠BHG=90°,EH=BH,
∴△EAH≌△BGH,
∴AE=GB=m+n,
∴△BEG的面積=BG×DE=.
(3)連接MB,作∠BMN內(nèi)部作∠BMK=40°,并取MK=8,連接KB,KN,
∵MA=MB,
∴∠MAB=∠MBA=40°,
∴∠ABM=180°-2×40°=100°,
∴∠NMK=∠AMB-∠BMK=100°-40°=60°,
∵MN=MK,
∴△MNK是等邊三角形,
∴MN=KN,∠MNK=60°,
∵MB=MA,MK=MN=AB=8,∠BMK=∠MAB=40°
∴△AMB≌△MBK,
∴BK=BM,
∵MN=KN,BK=BM,NB=NB,
∴△BMN≌△BKN,
∴∠BNM=30°,
∴∠ABN=∠MAB-∠MNB=10°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形網(wǎng)格中,每個小正方形的邊長均為1個單位長度,△ABC的三個頂點的位置如圖所示,現(xiàn)將△ABC平移,使點A變換為點A′,點B′、C′分別是B、C的對應(yīng)點.
(1)請畫出平移后的△A′B′C′,并求△A′B′C′的面積;
(2)若連接AA′,CC′,則這兩條線段之間的關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列圖形:已知a∥b,在第一個圖中,可得∠1+∠2=180°,則按照以上規(guī)律,∠1+∠2+∠P1+…+∠Pn=______度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】北京奧運會開幕前,某體育用品商場預(yù)測某品牌運動服能夠暢銷,就用32000元購進了一批這種運動服,上市后很快脫銷,商場又用68 000元購進第二批這種運動服,所購數(shù)量是第一批購進數(shù)量的2倍,但每套進價多了10元.
(1)該商場兩次共購進這種運動服多少套?
(2)如果這兩批運動服每套的售價相同,且全部售完后總利潤率不低于20%,那么每套售價至少是多少元?(利潤率=×100%)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(1,6)B(n,﹣2)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y= 的圖象的兩個交點,直線與y軸交于C點.
(1)求反比例函數(shù)和一次函數(shù)的表達式;
(2)求△BOC的面積;
(3)直接寫出不等式kx+b﹣ >0的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD與EF相交.
(1)圖中∠1和∠2分別在直線AB,CD的同_______,并且都在直線EF的_____,具有這樣位置關(guān)系的一對角叫做______;
(2)圖中∠2和∠8都在直線AB,CD____,并且分別在直線EF的___,具有這樣位置關(guān)系的一對角叫做_____;
(3)圖中∠2和∠7都在直線AB,CD____,且都在直線EF的____,具有這樣位置關(guān)系的一對角叫做______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x+m(m>0)與x軸交于點A(-2,0),直線y=-x+n(n>0)與x軸、y軸分別交于B、C兩點,并與直線y=2x+m(m>0)相交于點D,若AB=4.
(1)求點D的坐標;
(2)求出四邊形AOCD的面積;
(3)若E為x軸上一點,且△ACE為等腰三角形,直接寫出點E的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:
如圖①,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F(xiàn)分別是BC、CD上的點,且∠EAF=60°.探究圖中線段BE,EF,F(xiàn)D之間的數(shù)量關(guān)系.
(1)小明同學(xué)探究此問題的方法是,延長FD到點G,使DG=BE,連接AG,先證明△ABE≌ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是;
(2)探索延伸:
如圖②,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E,F(xiàn)分別是BC,CD上的點,且∠EAF= ∠BAD,上述結(jié)論是否仍然成立,請說明理由;
(3)實際應(yīng)用:
如圖③,在某次軍事演習(xí)中,艦艇甲在指揮中心O北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等,接到行動指令后,艦艇甲向正東方向以60海里/小時的速度前進,艦艇乙沿北偏東50°的方向以80海里/小時的速度前進,2小時后,指揮中心觀測到甲、乙兩艦艇分別到達E,F(xiàn)處,當∠EOF=70°時,兩艦艇之間的距離是海里.
(4)能力提高:
如圖④,等腰直角三角形ABC中,∠BAC=90°,AB=AC,點M,N在邊BC上,且∠MAN=45°.若BM=1,CN=3,則MN的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別以△ABC 的邊 AB,AC 向外作等邊三角形 ABD 和等邊三角形 ACE,線段 BE 與 CD 相交于點 O,連接 OA.
(1)求證:BE=DC;
(2)求∠BOD 的度數(shù);
(3)求證:OA 平分∠DOE.
(4)猜想線段 OA、OB、OD 的數(shù)量關(guān)系,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com