【題目】已知正方形ABCD和正方形AEFG有一個(gè)公共點(diǎn)A,點(diǎn)G、E分別在線段AD、AB上,若將正方形AEFG繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn),連接DG,在旋轉(zhuǎn)的過程中,你能否找到一條線段的長與線段DG的長度始終相等?并說明理由.

【答案】BE=DG,理由詳見解析.

【解析】

試題分析:觀察DG的位置,找包含DG的三角形,要使兩條線段相等,只要找到與之全等的三角形,即可找到與之相等的線段.

試題解析:連接BE,則BE=DG.

理由如下:

四邊形ABCD和四邊形AEFG都是正方形,

AB=AD,AE=AG,BAD=EAG=90°,

∴∠BAD﹣BAG=EAG﹣BAG,即DAG=BAE,

AB=AD,DAG=BAE,AE=AG,

∴△BAE≌△DAG(SAS),

BE=DG.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)在直角坐標(biāo)系中描出下列各點(diǎn)A(2,1),B(-2,1),C(3,2),D(-3,2);

(2)連結(jié)AB、CD觀察它們與y軸的關(guān)系,

(3)猜想(a,1)(-a,1)兩點(diǎn)的連線是否遵循上述規(guī)律.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖數(shù)在線的A、B、C三點(diǎn)所表示的數(shù)分別為a、b、c.根據(jù)圖中各點(diǎn)位置,判斷下列各式何者正確( 。

A. (a﹣1)(b﹣1)>0 B. (b﹣1)(c﹣1)>0 C. (a+1)(b+1)<0 D. (b+1)(c+1)<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九年級(jí)七班“數(shù)學(xué)興趣小組”對(duì)函數(shù)的對(duì)稱變換進(jìn)行探究,以下是探究發(fā)現(xiàn)運(yùn)用過程,請(qǐng)補(bǔ)充完整.
(1)操作發(fā)現(xiàn),在作函數(shù)y=|x|的圖象時(shí),采用了分段函數(shù)的辦法,該函數(shù)轉(zhuǎn)化為y= ,請(qǐng)?jiān)谌鐖D1所示的平面直角坐標(biāo)系中作出函數(shù)的圖象;

(2)類比探究
作函數(shù)y=|x﹣1|的圖象,可以轉(zhuǎn)化為分段函數(shù) , 然后分別作出兩段函數(shù)的圖象.聰明的小昕,利用坐標(biāo)平面上的軸對(duì)稱知識(shí),把函數(shù)y=x﹣1在x軸下面部分,沿x軸進(jìn)行翻折,與x軸上及上面部分組成了函數(shù)y=|x﹣1|的圖象,如圖所示;

(3)拓展提高
如圖2右圖是函數(shù)y=x2﹣2x﹣3的圖象,請(qǐng)?jiān)谠鴺?biāo)系作函數(shù)y=|x2﹣2x﹣3|的圖象;

(4)實(shí)際運(yùn)用
①函數(shù) 的圖象與x軸有個(gè)交點(diǎn),對(duì)應(yīng)方程|x2﹣2x﹣3|=0有個(gè)實(shí)根;
②函數(shù) 的圖象與直線y=5有個(gè)交點(diǎn),對(duì)應(yīng)方程|x2﹣2x﹣3|=5有個(gè)實(shí)根;
③函數(shù) 的圖象與直線y=4有個(gè)交點(diǎn),對(duì)應(yīng)方程 個(gè)實(shí)根;
④關(guān)于x的方程 有4個(gè)實(shí)根時(shí),a的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列判斷錯(cuò)誤的是( )

A. 如果∠2=∠4,那么AB∥CD B. 如果∠1=∠3,那么AB∥CD

C. 如果∠BAD+∠D=180°,那么AB∥CD D. 如果∠BAD+∠B=180,那么AD∥CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是等邊三角形ABC內(nèi)一點(diǎn),將線段AP繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到線段AQ,連接BQ.若PA=6,PB=8,PC=10,則四邊形APBQ的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一張四邊形紙片ABCD,∠A50°∠C150°.若將其按照?qǐng)D所示方式折疊后,恰好MD′∥AB,ND′∥BC,則∠D的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在ABC,ACB=90°,CD,CE三等分ACB,CDAB.

求證:(1)AB=2BC;

(2)CE=AE=EB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在下列條件中,不能證明ABD≌△ACD的是(

A. BDDC,ABAC B. BC,BDDC

C. BC,BADCAD D. ADBADCBDDC

查看答案和解析>>

同步練習(xí)冊(cè)答案