【題目】在△ABC中,DE垂直平分AB ,分別交AB、BC于點(diǎn)D 、E,MN垂直平分AC,分別交AC、BC于點(diǎn)M、N,連接AE,AN.
(1)如圖1,若∠BAC= 100°,求∠EAN的度數(shù);
(2)如圖2,若∠BAC=70°,求∠EAN的度數(shù);
(3)若∠BAC=a(a≠90°),請(qǐng)直接寫(xiě)出∠EAN的度數(shù). (用含a的代數(shù)式表示)
【答案】(1)∠EAN=20°;(2)∠EAN=40°;(3)當(dāng)0<a<90°時(shí),∠EAN=180°-2a;當(dāng)180°>a>90°時(shí),∠EAN=2a -180°.
【解析】
(1)根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等可得AE=BE,再根據(jù)等邊對(duì)等角可得∠BAE=∠B,同理可得,∠CAN=∠C,然后利用三角形的內(nèi)角和定理求出∠B+∠C,再根據(jù)∠EAN=∠BAC-(∠BAE+∠CAN)代入數(shù)據(jù)進(jìn)行計(jì)算即可得解;
(2)同(1)的思路,最后根據(jù)∠EAN=∠BAE+∠CAN-∠BAC代入數(shù)據(jù)進(jìn)行計(jì)算即可得解;
(3)根據(jù)前兩問(wèn)的求解,分α<90°與α>90°兩種情況解答.
(1)因?yàn)?/span>DE垂直平分AB,
所以AE=BE,∠BAE=∠B,
同理可得∠CAN= ∠C,
所以∠EAN=∠BAC -∠BAE-∠CAN=∠BAC -(∠B+∠C),
在△ABC中,∠B+∠C=180°- ∠BAC=80°,
所以∠EAN= 100-80=20°;
(2)因?yàn)?/span> DE垂直平分AB,
所以AE= BE,∠BAE=∠B,
同理可得∠CAN= ∠C,
所以∠EAN=∠BAE+∠CAN-∠BAC=(∠B+∠C)-∠BAC,
在△ABC中,∠B+∠C= 180°-∠BAC= 110°,
所以∠EAN=110°- 70°=40°;
(3)當(dāng)0<a<90°時(shí),∠EAN=180°-2a;
當(dāng)180°>a>90°時(shí),∠EAN=2a -180°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把拋物線y=﹣ 經(jīng)( )平移得到y(tǒng)=﹣ ﹣1.
A.向右平移2個(gè)單位,向上平移1個(gè)單位
B.向右平移2個(gè)單位,向下平移1個(gè)單位
C.向左平移2個(gè)單位,向上平移1個(gè)單位
D.向左平移2個(gè)單位,向下平移1個(gè)單位
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖中,每個(gè)正方形由邊長(zhǎng)為1的小正方形組成:
(1)觀察圖形,請(qǐng)?zhí)顚?xiě)下列表格:
正方形邊長(zhǎng) | 1 | 3 | 5 | 7 | … | n(奇數(shù)) |
黑色小正方形個(gè)數(shù) |
正方形邊長(zhǎng) | 2 | 4 | 6 | 8 | … | n(偶數(shù)) |
黑色小正方形個(gè)數(shù) |
(2)在邊長(zhǎng)為n(n≥1)的正方形中,設(shè)黑色小正方形的個(gè)數(shù)為P1 , 白色小正方形的個(gè)數(shù)為P2 , 問(wèn)是否存在偶數(shù)n,使P2=5P1?若存在,請(qǐng)寫(xiě)出n的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中.AB=AC.∠BAC=36°.BD是∠ABC的平分線,交AC于點(diǎn)D,E是AB的中點(diǎn),連接ED并延長(zhǎng),交BC的延長(zhǎng)線于點(diǎn)F,連接AF.求證:(1)EF⊥AB; (2)△ACF為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)組織學(xué)生去福利院獻(xiàn)愛(ài)心,在準(zhǔn)備禮品時(shí)發(fā)現(xiàn),購(gòu)買1個(gè)甲禮品比購(gòu)買1個(gè)乙禮品多花40元,并且花費(fèi)600元購(gòu)買甲禮品和花費(fèi)360元購(gòu)買乙禮品的數(shù)量相等.
(1)向甲、乙兩種禮品的單價(jià)各為多少元?
(2)學(xué)校準(zhǔn)備購(gòu)買甲、乙兩種禮品共30個(gè)送給福利院的老人,要求購(gòu)買禮品的總費(fèi)用不超過(guò)2400元,那么最多可購(gòu)買多少個(gè)甲禮品?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下面的證明:如圖,點(diǎn)D,E,F分別是三角形ABC的邊BC,CA,AB上的點(diǎn),連接DE,DF,DE∥AB,∠BFD=∠CED,連接BE交DF于點(diǎn)G,求證:∠EGF+∠AEG=180°.
證明:∵DE∥AB(已知),
∴∠A=∠CED( )
又∵∠BFD=∠CED(已知),
∴∠A=∠BFD( )
∴DF∥AE( )
∴∠EGF+∠AEG=180°( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB=30°,∠AOB內(nèi)有一定點(diǎn)P,且OP=12,在OA上有一點(diǎn)Q,OB上有一點(diǎn)R,若△PQR周長(zhǎng)最小,則最小周長(zhǎng)是_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E在線段CD上,AE,BE分別平分∠DAB和∠CBA,∠AEB=90°,設(shè)AD=x,BC=y(tǒng),且(x-3)2+|y-4|=0.
(1)求AD和BC的長(zhǎng);
(2)你認(rèn)為AD和BC有怎樣的位置關(guān)系?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,BE是它的角平分線,∠C=90°,D在AB邊上,以DB為直徑的半圓O經(jīng)過(guò)點(diǎn)E,交BC于點(diǎn)F.
(1)求證:AC是⊙O的切線;
(2)已知sinA= ,⊙O的半徑為4,求圖中陰影部分的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com