【題目】如圖,矩形ABCD中,AB=4,AD=3,M是邊CD上一點(diǎn),將△ADM沿直線AM對(duì)折,得到△ANM.

(1)當(dāng)AN平分∠MAB時(shí),求DM的長;
(2)連接BN,當(dāng)DM=1時(shí),求△ABN的面積;
(3)當(dāng)射線BN交線段CD于點(diǎn)F時(shí),求DF的最大值.

【答案】
(1)

由折疊性質(zhì)得:△ANM≌△ADM,

∴∠MAN=∠DAM,

∵AN平分∠MAB,∠MAN=∠NAB,

∴∠DAM=∠MAN=∠NAB,

∵四邊形ABCD是矩形,

∴∠DAB=90°,

∴∠DAM=30°,

∴DM=ADtan∠DAM=3×tan30°=3× =


(2)

延長MN交AB延長線于點(diǎn)Q,如圖1所示:

∵四邊形ABCD是矩形,

∴AB∥DC,

∴∠DMA=∠MAQ,

由折疊性質(zhì)得:△ANM≌△ADM,

∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,

∴∠MAQ=∠AMQ,

∴MQ=AQ,

設(shè)NQ=x,則AQ=MQ=1+x,

∵∠ANM=90°,

∴∠ANQ=90°,

在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,

∴(x+1)2=32+x2

解得:x=4,

∴NQ=4,AQ=5,

∵AB=4,AQ=5,

∴SNAB= SNAQ= × ANNQ= × ×3×4=


(3)

過點(diǎn)A作AH⊥BF于點(diǎn)H,如圖2所示:

∵四邊形ABCD是矩形,

∴AB∥DC,

∴∠HBA=∠BFC,

∵∠AHB=∠BCF=90°,

∴△ABH∽△BFC,

,

∵AH≤AN=3,AB=4,

∴當(dāng)點(diǎn)N、H重合(即AH=AN)時(shí),AH最大,BH最小,CF最小,DF最大,此時(shí)點(diǎn)M、F重合,B、N、M三點(diǎn)共線,如圖3所示:

由折疊性質(zhì)得:AD=AH,

∵AD=BC,

∴AH=BC,

在△ABH和△BFC中,

∴△ABH≌△BFC(AAS),

∴CF=BH,

由勾股定理得:BH= = = ,

∴CF= ,

∴DF的最大值=DC﹣CF=4﹣


【解析】(1)由折疊性質(zhì)得∠MAN=∠DAM,證出∠DAM=∠MAN=∠NAB,由三角函數(shù)得出DM=ADtan∠DAM= 即可;(2)延長MN交AB延長線于點(diǎn)Q,由矩形的性質(zhì)得出∠DMA=∠MAQ,由折疊性質(zhì)得出∠DMA=∠AMQ,AN=AD=3,MN=MD=1,得出∠MAQ=∠AMQ,證出MQ=AQ,設(shè)NQ=x,則AQ=MQ=1+x,證出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出NQ=4,AQ=5,即可求出△ABN的面積;(3)過點(diǎn)A作AH⊥BF于點(diǎn)H,證明△ABH∽△BFC,得出對(duì)應(yīng)邊成比例 = ,得出當(dāng)點(diǎn)N、H重合(即AH=AN)時(shí),AH最大,BH最小,CF最小,DF最大,此時(shí)點(diǎn)M、F重合,B、N、M三點(diǎn)共線,由折疊性質(zhì)得:AD=AH,由AAS證明△ABH≌△BFC,得出CF=BH,由勾股定理求出BH,得出CF,即可得出結(jié)果.本題考查了矩形的性質(zhì)、折疊的性質(zhì)、相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理等知識(shí);本題綜合性強(qiáng),難度較大,熟練掌握矩形和折疊的性質(zhì),證明三角形相似和三角形全等是解決問題的關(guān)鍵.
【考點(diǎn)精析】關(guān)于本題考查的角平分線的性質(zhì)定理和矩形的性質(zhì),需要了解定理1:在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等; 定理2:一個(gè)角的兩邊的距離相等的點(diǎn),在這個(gè)角的平分線上;矩形的四個(gè)角都是直角,矩形的對(duì)角線相等才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

1 (2)

(3) (4)

【答案】(1) ;(2) ;(3) ; (4)

【解析】試題分析:(1)分子、分母分解因式后約分即可;

(2)先通分計(jì)算括號(hào)內(nèi)分式的減法,然后把除法轉(zhuǎn)化為乘法,分子、分母分解因式后約分即可;

(3)第二個(gè)分式分子、分母分解因式后約分,然后通分轉(zhuǎn)化為同分母分式,最后依照同分母分式的加減法則計(jì)算即可;

(4)先通分計(jì)算括號(hào)內(nèi)分式的減法,然后把除法轉(zhuǎn)化為乘法,分子、分母分解因式后約分即可.

試題解析:

解:1)原式

2)原式

;

3)原式

;

4)原式

點(diǎn)睛:此題考查了分式的混合運(yùn)算,熟練掌握運(yùn)算法則和運(yùn)算順序是解本題的關(guān)鍵.

型】解答
結(jié)束】
20

【題目】解分式方程:

(1) (2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD是△ABC的角平分線,它的垂直平分線分別交AB,BD,BC于點(diǎn)E,F(xiàn),G,連接ED,DG.

(1)請(qǐng)判斷四邊形EBGD的形狀,并說明理由;
(2)若∠ABC=30°,∠C=45°,ED=2 ,點(diǎn)H是BD上的一個(gè)動(dòng)點(diǎn),求HG+HC的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中(AD>AB),點(diǎn)EBC上一點(diǎn),且DE=DA,AF⊥DE,垂足為點(diǎn)F,在下列結(jié)論中,不一定正確的是( 。

A. △AFD≌△DCE B. AF=AD C. AB=AF D. BE=AD﹣DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為更好的治理水質(zhì),保護(hù)環(huán)境,市治污辦事處預(yù)購買10臺(tái)污水處理設(shè)備,現(xiàn)有A、B兩種型號(hào)的設(shè)備,其中價(jià)格及污水處理量如下表:

A

B

價(jià)格(萬元)

a

b

處理污水量(噸/月)

240

200

詢問商家得知:購買一臺(tái)A型設(shè)備比購買一臺(tái)B型設(shè)備多2萬元,購買2臺(tái)A型設(shè)備比購買3臺(tái)B型設(shè)備少6萬元,根據(jù)以上條件.

(1)求a、b的值;

(2)市污水處理辦公室由于資金缺乏,購買污水處理設(shè)備的資金最多105萬元,你認(rèn)為該有幾種購買方案?

(3)在(2)的情況下,若每月污水處理量要求不低于2040噸,為節(jié)約資金,請(qǐng)你幫污水處理辦事處選取一種最省錢的方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,四邊形ABCD是正方形,點(diǎn)E是邊BC上一點(diǎn),點(diǎn)F在射線CM上,∠AEF=90°,AE=EF,過點(diǎn)F作射線BC的垂線,垂足為H,連接AC.
(1)試判斷BE與FH的數(shù)量關(guān)系,并說明理由;
(2)求證:∠ACF=90°;
(3)連接AF,過A、E、F三點(diǎn)作圓,如圖2,若EC=4,∠CEF=15°,求 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列能判定AB∥CD的條件有( )個(gè).

1∠B+∠BCD=180°;(2∠1=∠2;(3∠3=∠4;(4∠B=∠5

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某飲料廠以300千克的A種果汁和240千克的B種果汁為原料,配制生產(chǎn)甲、乙兩種新型飲料,已知每千克甲種飲料含0.6千克A種果汁,含0.3千克B種果汁;每千克乙種飲料含0.2千克A種果汁,含0.4千克B種果汁.飲料廠計(jì)劃生產(chǎn)甲、乙兩種新型飲料共650千克,設(shè)該廠生產(chǎn)甲種飲料x(千克).

(1)列出滿足題意的關(guān)于x的不等式組,并求出x的取值范圍;

(2)已知該飲料廠的甲種飲料銷售價(jià)是每1千克3元,乙種飲料銷售價(jià)是每1千克4元,那么該飲料廠生產(chǎn)甲、乙兩種飲料各多少千克,才能使得這批飲料銷售總金額最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形紙片ABCD中,已知AD=8,折疊紙片使AB邊與對(duì)角線AC重合,點(diǎn)B落在點(diǎn)F處,折痕為AE,且EF=3,則AB的長為(  )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

同步練習(xí)冊(cè)答案