【題目】老師在微信群發(fā)了這樣一個圖:以線段AB為邊作正五邊形ABCDE和正三角形ABG,連接AC、DG,交點為F,下列四位同學(xué)的說法不正確的是( )

A. B. C. D.

【答案】B

【解析】

利用對稱性可知直線DG是正五邊形ABCDE和正三角形ABG的對稱軸,再利用正五邊形、等邊三角形的性質(zhì)一一判斷即可;

∵五邊形ABCDE是正五邊形,ABG是等邊三角形,

∴直線DG是正五邊形ABCDE和正三角形ABG的對稱軸,

DG垂直平分線段AB

∵∠BCD=BAE=EDC=108°,∴∠BCA=BAC=36°,

∴∠DCA=72°,∴∠CDE+DCA=180°,DEAC,

∴∠CDF=EDF=CFD=72°,

∴△CDF是等腰三角形.

故丁、甲、丙正確.

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°,以AB的中點O為圓心、OA為半徑的圓交AC于點D,E是BC的中點,連接DE,OE.

(1)判斷DE與⊙O的位置關(guān)系,并說明理由;

(2)求證:BC2=2CD·OE;

(3)若cos∠BAD=,BE=6,求OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將平行四邊形紙片ABCD按如圖方式折疊,使點C與點A重合,點D落到D’處,折痕為EF.

(1)、求證:△ABE≌△AD’F;

(2)、連接CF,判斷四邊形AECF是否為平行四邊形?請證明你的結(jié)論。

(3)、若AE=5,求四邊形AECF的周長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為3的扇形AOB,∠AOB=120°,以AB為邊作矩形ABCD交弧AB于點E,F,且點E,F為弧AB的四等分點,矩形ABCD與弧AB形成如圖所示的三個陰影區(qū)域,其面積分別為,,,則為( )(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸交于點A,B兩點(點A在點B左邊),與y軸交于點C

1)求A,B兩點的坐標(biāo).

2)點P是線段BC下方的拋物線上的動點,連結(jié)PC,PB

①是否存在一點P,使△PBC的面積最大,若存在,請求出△PBC的最大面積;若不存在,試說明理由.

②連結(jié)AC,APAPBC于點F,當(dāng)∠CAP=∠ABC時,求直線AP的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】科研所計劃建一幢宿舍樓,因為科研所實驗中會產(chǎn)生輻射,所以需要有兩項配套工程.①在科研所到宿舍樓之間修一條高科技的道路;②對宿含樓進行防輻射處理;已知防輻射費y萬元與科研所到宿舍樓的距離xkm之間的關(guān)系式為yax+b(0≤x≤3).當(dāng)科研所到宿舍樓的距離為1km時,防輻射費用為720萬元;當(dāng)科研所到宿含樓的距離為3km或大于3km時,輻射影響忽略不計,不進行防輻射處理,設(shè)修路的費用與x2成正比,且比例系數(shù)為m萬元,配套工程費w=防輻射費+修路費.

(1)當(dāng)科研所到宿舍樓的距離x3km時,防輻射費y____萬元,a____,b____;

(2)m90時,求當(dāng)科研所到宿舍樓的距離為多少km時,配套工程費最少?

(3)如果最低配套工程費不超過675萬元,且科研所到宿含樓的距離小于等于3km,求m的范圍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名同學(xué)分別進行6次射擊訓(xùn)練,訓(xùn)練成績(單位:環(huán))如下表

第一次

第二次

第三次

第四次

第五次

第六交

9

8

6

7

8

10

8

7

9

7

8

8

對他們的訓(xùn)練成績作如下分析,其中說法正確的是(  )

A. 他們訓(xùn)練成績的平均數(shù)相同 B. 他們訓(xùn)練成績的中位數(shù)不同

C. 他們訓(xùn)練成績的眾數(shù)不同 D. 他們訓(xùn)練成績的方差不同

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,點D,EO上,∠B2ADE,點CBA的延長線上.

(Ⅰ)若∠C=∠DAB,求證:CEO的切線;

(Ⅱ)若OF2AF3,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+x+ca0)與x軸交于AB兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知點A的坐標(biāo)為(﹣1,0),點C的坐標(biāo)為(0,2).

1)求拋物線的解析式;

2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標(biāo);如果不存在,請說明理由;

3)點E是線段BC上的一個動點,過點Ex軸的垂線與拋物線相交于點F,當(dāng)點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案